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Abstract

This paper introduces a method that efficiently reduces the computational cost and parameter
size of Transformer. The proposed model, refer to as Group-Transformer, splits feature space
into multiple groups, factorizes the calculation paths, and reduces computations for the group
interaction. Extensive experiments on two benchmark tasks, enwik8 and text8, prove our model’s
effectiveness and efficiency in small-scale Transformers. To the best of our knowledge, Group-
Transformer is the first attempt to design Transformer with the group strategy, widely used for
efficient CNN architectures.

1 Introduction

Character-level language modeling has become a core task in the field of natural language processing
(NLP) such as classification (Zhang et al., 2015), sequence tagging (Guo et al., 2019a), question an-
swering (He and Golub, 2016), and scene text recognition (Baek et al., 2019; Hwang and Sung, 2016),
with its simplicity on generating text and its adaptability to other languages. Most previous approaches
had consisted of recurrent neural networks (RNNs), but they have suffered from high learning com-
plexity caused by inherently long character sequences. Recently, Transformer (Vaswani et al., 2017)
have shown promise in addressing this problem and have become a standard way in general language
modeling (Al-Rfou et al., 2019; Dai et al., 2019).

Transformers have achieved higher performance but have also grown in size by building deeper and
wider networks. TransformerXL (Dai et al., 2019) and GPT-2 (Radford et al., 2019), for instance, contain
277M and 1542M parameters, respectively. However, this trend toward a large size model for perfor-
mance is not suitable for edge device applications that require small memory sizes and fast real-time
responsiveness, such as auto-correction and auto-completion (Gong et al., 2019). Contrary to the recent
trend, character-level language models need to be scaled down while minimizing performance degrada-
tion due to capacity loss.

A simple way to get a lightweight Transformer is to reduce its width and depth, directly related to the
model complexity. However, the width reduction loses representation power of high dimensional feature
space, and the depth reduction brings the lower capacity that stacks diverse dependencies between local
information. To compensate for the losses, knowledge distillation (Sun et al., 2019) tries to optimize a
scale-downed model with a large teacher network, and weight-sharing (Bai et al., 2019) stacks a unified
layer multiple times. They have shown promising results, but they still require a scale-downed model as
a target model, or a unified layer for iterative usage.

In this paper, we introduce a lightweight Transformer, referred to as Group-Transformer, with lower
model complexity without any modification to its width and depth. Our method utilizes group-wise
operations, inspired by the group convolution approaches (Zhang et al., 2018; Sandler et al., 2018) that
have effectively compressed huge image processing models. The basic concept of group convolution is
to partition the feature maps into multiple groups and process them individually, rather than connecting

This work is licensed under a Creative Commons Attribution 4.0 International License. License details: http://
creativecommons.org/licenses/by/4.0/.
†,†† This work was done at CLOVA AI Research



6884

Figure 1: Feature connections of Transformer and Group-Transformer for a single time step. All con-
nections are categorized into “intra-group” and “inter-group”, and Group-Transformer directly reduces
computational complexity in “inter-group” connections.

them. Figure 1 shows a brief overview of our proposed model utilizing the group strategy. Replacing
all fully connected operations to group-wise operations reduce the model complexity since only a few
connections remain as intra-group connections.

Beside, Group-Transformer employes lightweight inter-group operations to compensate for the infor-
mation loss of inter-group correlations. The mutually exclusive calculation of the group strategy com-
promises performance, but modeling the interactions for all group pairs might be over-parameterized.
Our inter-group operations share a common feature over groups in attention layers and utilize a low-rank
approximation in feed-forward layers to model the inter-group information flows with a few calculations.

We conducted extensive experiments on two benchmark datasets, enwik8 and text8, and found that
Group-Transformer showed better performance when compared against Transformers with a comparable
number of parameters under 10M. Furthermore, when scaling down Transformer, Group-Transformer
shows promising results comparing to other scale-down methods. We provide further analysis to identify
the contributions of our proposed modules in detail. To the best of our knowledge, Group-Transformer
is the first attempt to build a lightweight Transformer with the group strategy.

2 Related Works

2.1 Towards a Lightweight Transformer
Since Transformer has become a promising model for diverse NLP tasks, there have been attempts to
improve its architectural efficiency with two majority approaches. The first is to restrict dependencies
between input tokens to reduce superfluous pair-wise calculations (Child et al., 2019; Guo et al., 2019b;
Sukhbaatar et al., 2019a). The approach provides time efficiency during inference, but it does not ad-
dress the heavy parameterization of Transformer. The second approach is to develop a lightweight Trans-
former architecture while maintaining its properties. For example, (Sukhbaatar et al., 2019b) combined
the multi-head attention and position-wise feed-forward layer to devise a unified module with fewer pa-
rameters. Although the unified layer shows promising improvement, it still keeps bottleneck property of
the position-wise feed-forward layer; thus, its benefit can be marginal in small-size Transformer settings.
(Tay et al., 2019) utilizes quaternion algebra to build lightweight modules for Transformer. They also
factorize the components of the embedding layer, but the expression power can be limited by the con-
nection of factorized components based on the quaternion principle. Our proposed model is categorized
into a lightweight Transformer architecture. By adjusting the number of groups, Group-Transformer
decreases the number of feature connections instead of tuning the size of the feature dimension.

2.2 Towards Lightweight Neural Networks
Building a lightweight neural network has attracted much attention to compressing many large and deep
state-of-the-art neural networks. One of the major approaches utilizes large pre-trained models to gain
its small variant. Network pruning and quantization (Han et al., 2015) directly compresses parame-
ters identified by pre-trained models. Knowledge distillation (Hinton et al., 2015) transfers knowledge
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(a) Overview (b) Group attention (c) Group feed-forward

Figure 2: Architecture overviews of Group-Transformer and its sub-modules when the number of groups
is two. The gray arrows show the information flow across the entire groups, and the blue and red arrows
indicate the information flow for each group.

from a large-scale network to a small network. These approaches have compressed a pre-trained model
effectively, but they still require a small student network.

Another approach designs a lightweight network architecture having fewer parameters and calcula-
tions. Low-rank approximation (Novikov et al., 2015) decomposes a big transition matrix into multiple
small matrices. Group convolution (Krizhevsky et al., 2012; Zhang et al., 2018) factorizes feature spaces
and processes them individually. Inspired by the two methods, Group-Transformer partitions feature
spaces, spilt all feature connections into “intra-group” and “inter-group” connections, conducts fewer
calculations for “inter-group” compared to the original Transformer.

The group strategy for NLP tasks has been investigated, but not on Transformers. (Kuchaiev and
Ginsburg, 2017) proposed group-wise RNN as a special form of ensembled RNNs. However, they did
not consider the interactions between different groups. (Gao et al., 2018) combined the idea of ShuffleNet
into the group-wise RNN and achieved promising results on language modeling as well as machine
translation. In this work, we adopt the group strategy and build new inter-group operations suitable for
Transformer architecture.

3 Group-Transformer

Figure 2a shows the overall architecture of Group-Transformer. It consists of a group embedding (bottom
grey box), which embeds a character into grouped features, group attention (yellow box), which contains
attention modules to identify dependencies in the time domain, and group feed-forward layer (green box),
which re-configures the grouped features. As can be seen, when an input character is given, Group-
Transformer converts the input into multiple group representations (blue dots and red dots), processes
and merges them to predict the next character. Figure 2b and 2c show group-wise information flow (blue
and red arrows) and inter-group information flow (grey arrow) in the sub-modules. Without the inter-
group information flows, the grouped features are processed independently. We observed that inter-group
modeling ensures that the groups become aware of the others and prevents different groups hold the same
information. The following subsections describe the architectural details of the sub-modules and their
relations. For a simple description, we describe the processes for a single time step.

3.1 Group Embedding Layer

Group embedding layer identifies a set of embeddings to represent a token. The idea of representing a
sentence, word or even character using a set of vectors can widely be found in many NLP models that
embed input tokens by concatenating (or summing) its embedding and its sub-units’ embeddings (Ver-
wimp et al., 2017; Bojanowski et al., 2017; Kim et al., 2019; Zhou et al., 2019). Similarly, we assume
a single character c to be represented with G vector representations of groups, that is, [uc1, · · · ,ucG]
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where ucg ∈ RDgroup , 1 ≤ g ≤ G. When a character is given, the group embedding layer retrieves a
corresponding set of vectors and passes it to the following group attention layer.

3.2 Group Attention
The attention mechanism identifies dependencies between features in the time domain and combines the
information of them. It contains three steps; (1) identifying queries, keys, and values, (2) retrieving rela-
tive features at different times, and (3) transforming the attended feature into the input domain (Vaswani
et al., 2017). The main focus of this paper is to apply a group strategy to the feature space of Transformer.
Thus, we let the second step be identical to those of the original Transformer and focused on the first and
the third steps.

Figure 2b explains the architecture of group attention. The multi-head attention module represents
the second step, the under operations identify the queries for the first step, and the upper operations
transform the attention output for the third step. The group attention processes the grouped features with
intra-group operations (white boxes) and inter-group operations (grey boxes).

3.2.1 Grouped Queries, Keys and Values
Let x = [x1, · · · , xG] be a set of input vectors where xg ∈ RDgroup for the group g. Since the multi-head
attention contains Hgroup attention modules for a single group, group attention first calculates query qgh

for a group g and its head h as the below,

qgh = xgWq-intra
gh +

∑
g′

xg′W
q-inter
g′h , (1)

where Wq-intra
gh ∈ RDgroup×Dhead and Wq-inter

gh ∈ RDgroup×Dhead are linear weights to describe an intra-group
(white boxes) and an inter-group (grey box) combinations, respectively, when Dhead = Dgroup/Hgroup.
In the formula, the first term on the right-hand side identifies a specific feature for the head h in the
group g, and the second term determines head-wise features shared by all groups. It should note that all
heads are split into groups; thus, the total number of heads keeps unchanged. Compared with the fully
connected linear layer over the groups, the approach restricts the connection between the groups, so it
requires fewer parameters and calculations.

The above decomposition of intra- and inter-group connections can be applied to identify keys and
values. However, we observed dramatic performance drops when applying group strategy on two com-
ponents among query, key, and value (See 4.5.). The performance drops indicate that heads in a single
group require information in other groups. Based on the experimental results, Group-Transformer uti-
lizes fully connected linear layers to identify keys and values as the original Transformer does.

3.2.2 Multi-head Attention
The identified headed elements are used for connecting features in the time domain. In this step, position
encoding (Vaswani et al., 2017) has an important role for the features to be aware of their position in an
input sequence. In this paper, we apply the relative positional encoding, which describes a long-length
character sequence effectively. By following (Dai et al., 2019), we define the attention score map with
the relative positional information, and the attention mechanism determines the attended feature agh of
the head h in the group g.

3.2.3 Combination of Multiple Heads
The multiple heads [ag1, · · · , agH ] in the group g are combined as the below;

og =
∑
h

(
aghWo-intra

gh +
∑
g′

ag′hWo-inter
g′h

)
, (2)

where Wo-intra
gh ∈ RDhead×Dgroup and Wo-inter

gh ∈ RDhead×Dgroup are linear weights for combining intra-group
and inter-group information, respectively. As can be seen, the final output is determined with a specific
feature from its own group and a shared feature from whole groups. These intra-group and inter-group
modelings mainly contribute to reducing the number of parameters and calculations. Finally, the inputs
xg are added into the output og as x̂g = xg + og for a residual connection.
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3.2.4 Required Resources of Group Attention
The multi-head attention of the original Transformer uses 4 ∗O(D2

model) of parameters for queries, keys,
values, and the outputs. In comparison, group attention keeps 2 ∗ O(D2

model) parameters for keys and
values, but 2 ∗ O( 2

GD
2
model) parameters for queries and the outputs, where Dgroup = Dmodel/G. When

the number of groups is 2, the number of group attention parameters is the same as those of the original
Transformer. However, when the group number increases to 4 or 8, the parameters decrease to 75% or
62.5% of the original module.

3.3 Group Feed-forward Layer
Group feed-forward layer re-configures the outputs of the attention module, x̂g, by applying group-wise
operation at each position. Figure 2c shows the architecture of the proposed module. As can be seen,
the groups are shuffled (grey box) and support each other. As the original module does, the linear layers
in our module transpose the input feature into a high dimensional space with non-linear activation and
transform the output back into the input space.

Given G input features [x̂1, · · · , x̂G], group feed-forward layer transposes the grouped features into a
high dimensional space as follows;

ȳg = x̂gWf1-intra
g +

∑
g′

x̂g′Wf1-inter
g′g , (3)

where Wf1-intra
g ∈ RDgroup×D̄group and Wf1-inter

g′g ∈ RDgroup×D̄group are linear weights for mapping intra- and
inter-group information into the D̄group-dimensional space, relatively bigger than Dgroup , here, we in-
troduce a low-rank matrix approximation on the inter-group transformation matrix Wf1-inter

g′g . Modeling
interactions between groups requires the G × G weights as well as the additional weights to trans-
pose group g into the high dimensional space for the target group g′. If designing a fully connected
weight for all groups like the original Transformer, the feed-forward layer still holds heavyweights and
expensive calculations. To reduce the overburden, we factorize the matrix Wf1-inter

g′g into two matrices,
Wf1-inter[1]

g′g ∈ RDgroup×M and Wf1-inter[2]
g′g ∈ RM×D̄group , inspired by (Sainath et al., 2013) and (Novikov et

al., 2015). The newly introduced dimensionM is smaller thanDgroup, and thus the number of parameters
and calculation is reduced proportionally with the ratio between M and Dgroup. In this paper, we set M
asDgroup/G to control the dimension relatively with the number of the groups. Interestingly, such matrix
factorization can be modeled efficiently with a group-wise linear transformation and a shuffle trick, as
shown in Figure 2c.

Finally, a group-wise linear transformation is applied upon the high-dimensional feature as follow;

yg = ReLU(ȳg)Wf2
g , (4)

where Wf2
g ∈ RD̄G×Dgroup is a linear weight. For a residual connection, each grouped input feature is

added into the output of the group feed-forward layer; ŷg = x̂g + yg.

3.3.1 Required Resources of Group Feed-forward
An original position-wise feed-forward layer requires 2 ∗ O(DmodelD̄model) of parameters when D̄model
is the inner filter size. In comparison, a group feed-forward layer requires 3

G ∗ O(DmodelD̄model) of
parameters where Dgroup = Dmodel/G, D̄group = D̄model/G, and M = Dgroup/G. When the number
of groups is 2, the group feed-forward layer uses 81% parameters of those of the original Transformer.
When increasing the number of groups to 4 or 8, the number of parameters decreases proportionally to
40.6% or 20.3%.

4 Experimental Results

4.1 Dataset and Experimental Settings
We demonstrate the efficiency of the proposed Group-Transformer with two popular benchmark datasets,
enwik8 and text8. The enwik8 dataset contains 100M of English Wikipedia texts with 204 unique char-
acters, including alphabets, non-Latin and special characters. In comparison, the text8 dataset provides
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100MB of pre-processed texts only with 27 unique characters by filtering superfluous content, such as
tables, citations, and punctuation, and by replacing the non-Latin characters with spelled-out equivalents
(i.e., “15” to “one five”). For a fair comparison with previous works, we used the training/dev/test splits
defined by (Mahoney, 2011) for both enwik8 and text8.

Most experimental settings follow those of (Dai et al., 2019), where the difference lies in the hyper-
parameters that influence the size of the model. For the regularization of the model, we applied layer
normalization (Ba et al., 2016) independently over groups and dropout layers upon the outputs of
the group attention and the group feed-forward layer with the probability p = 0.1. The length of
the feed sequence was 512, with the cached 512-length for the previous sequence (Dai et al., 2019).
Adam optimizer with a learning rate of 2.5e-4, 0.9 for β1, 0.999 for β2, 22 batch size, 400,000 it-
erations, and the best model from the given validation set. The code and settings can be found at
https://github.com/clovaai/group-transformer.

4.2 Scale-down Transformers by Adjusting Hyper-parameters
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Figure 3: Performance comparison of three reduction methods from model parameters such as the num-
ber of layers (“L”), the hidden dimension (“D”), and the number of groups (“G”). The FLOPs indicates
the number of calculations to generate 512 length of a character sequence.

The number of groups can be interpreted as a hyper-parameter affecting the model size. Figure 3
shows the effectiveness of three hyper-parameters, such as the number of layers, the size of the hidden
dimension, and the number of groups. The default model used TransformerXL (Dai et al., 2019) with
L = 9, Hmodel = 8, Dmodel = 256, and D̄model = 4 ∗ Dmodel, and then we reduced the three hyper-
parameters. It should note that Group-Transformer split the multi-heads into groups; thus, each group
holds Hgroup = Hmodel/G attention heads without any changes in the total number of the multi-heads.
When making the model thinner or shallower, the performances of the model become worse, but the
required resources are getting lower. When comparing ours with two reduction methods, the group
strategy shows better performances than the models requiring comparable resources. This experiment
proved that the feature grouping methods, the main idea of this paper, is more efficient to reduce the
model size and the time complexity than tuning other model parameters. It should be reminded that all
models are the same number of total heads because the group strategy binds the multi-heads into groups.

4.3 Ablation Study on Group-Transformer Modules

Table 1 shows the module-wise impact on the number of parameters and performance. For a fair com-
parison, we set the baseline model to a reduced TransformerXL (Dai et al., 2019) of less than 8M param-
eters, and can gradually reduce the model size by replacing the attention and the feed-forward layer with
Group-Transformer module selectively. When replacing the feed-forward layer with Group-Transformer
module, we observe that the number of parameters in all cases decreases more efficiently than replacing
the attention module. Interestingly, when replacing two modules with 2 or 4 group cases, the perfor-
mance degradation is less than the sum of the individual performance losses but is able to reduce the
overall required resources more. For instance, the individual performance drops in the 4 group case are
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2 groups 4 groups 8 groups

Atten. FF. # Param. FLOPs bpc # Param. FLOPs bpc # Param. FLOPs bpc
(∆ diff.) (∆ diff.) (∆ diff.) (∆ diff.) (∆ diff.) (∆ diff.) (∆ diff.) (∆ diff.) (∆ diff.)

Original Original 8.1M 9.4B 1.224 8.1M 9.4B 1.224 8.1M 9.4B 1.224

Ours Original 7.8M 9.1B 1.236 7.1M 8.3B 1.247 6.6M 8.0B 1.246
(-0.3M) (-0.3B) (+0.012) (-1.0M) (-1.1B) (+0.023) (-1.5M) (-1.4B) (+0.018)

Original Ours 7.1M 7.0B 1.221 5.3M 5.8B 1.251 4.1M 5.2B 1.284
(-1.0M) (-2.4B) (-0.003) (-2.8M) (-3.6B) (+0.027) (-4.0M) (-4.2B) (+0.060)

Ours Ours 6.8M 6.7B 1.221 4.3M 4.7B 1.261 2.9M 3.7B 1.316
(-1.3M) (-2.7B) (-0.003) (-3.8M) (-4.7B) (+0.037) (-5.2M) (-5.7B) (+0.092)

Table 1: Ablation study on the proposed modules, group attention and group feed-forward layer.

0.023 from Atten. and 0.027 from FF., but their combination shows only 0.037, less than the sum of the
gaps. This result demonstrates the efficiency of concurrently using both group-wise modules.

2 Group 4 Group 8 Group

Q K V Param. bpc Param. bpc Param. bpc

◦ 6.8M 1.221 4.3M 1.261 2.9M 1.316
◦ 6.8M 1.225 4.3M 1.266 2.9M 1.316
◦ 6.8M 1.223 4.3M 1.262 2.9M 1.318

◦ ◦ 6.8M 1.233 4.0M 1.283 2.5M 1.328
◦ ◦ 6.8M 1.231 4.0M 1.277 2.5M 1.334
◦ ◦ 6.8M 1.228 4.0M 1.275 2.5M 1.340

◦ ◦ ◦ 6.8M 1.237 3.7M 1.296 2.0M 1.378

Table 2: Ablation study in modeling query, key, and value with our group operations.

The group-attention module includes identifying the attention elements such as query, key, and value,
conducting attention mechanisms, and configuring the output from the attended features. Although the
group strategy can be applied to the three elements fed into the multi-head attention, it can affect each
grouped information to be isolated. Table 2 investigated the effectiveness of the group strategy on the
three elements. As can be seen, the group strategy on a single element shows similar performance
in views of its resource and accuracy. However, if applied to more than two elements, the results show
marginal benefit on the parameter size and dramatic performance drops in all cases of the group numbers.
Based on the experiment, we choose the query as the only target of the group strategy among the three
attention elements.

4.4 Ablation Study on Inter-group Operations

Here, we investigate the influence of inter-group operations in our model. When the inter-group op-
erations are removed (grey boxes in Figures 2b and 2c), we observed the performance degradation on
2 Group-Transformer by 0.028 bpc and 4 Group-Transformer by 0.051 bpc. These gaps are relatively
huge when compared to the performance gap between TransformerXL and Group-Transformers in Ta-
ble 1. The results re-emphasize the importance of inter-group modeling in Group-Transformer. Figure 4
shows the similarity patterns between the multi-head attention of our models and the ablation models
without the inter-group operations. As can be seen, the multi-head attention map from the model without
inter-group operations shows high similarities among different groups, while the proposed model shows
the opposite. These similarity patterns imply that the model cannot fully take advantage of multi-head
attention, which is designed to attend multiple positions of content, without the proposed inter-group
operation.
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Figure 4: Similarity matrices of multi-head attentions. The black box indicates a high similarity of
attention patterns and the white box does the opposite. The red boxes represent groups of the multiple
heads. The similarity is measured based on the euclidean distance between attention weights over a test
sequence.

4.5 Experiment on Number of Groups

# of groups Params enwik8 bpc

1 Group (TransformerXL) 4.25M 1.246
2 Group 4.29M 1.230
4 Group 4.26M 1.222
8 Group 4.24M 1.236

Table 3: Performance comparison between the numbers of groups, under about 4.2M parameters.

The number of groups in Group-Transformer is closely related to the parameter size. By increasing
the group number, the model can be scale-downed under the same hidden dimension. To identify the
best number of groups, we set the maximum number of heads to 8, and 1, 2, 4, and 8 group cases were
compared. For a fair comparison, the models have the same number of layers as 9, and the hidden size
was adjusted to hold around 4.2M parameters. As can be seen in Table 3, the 1 group model is the
same as the TransformerXL model because it does not include any inter-group operations, as well as
the hidden features, are not split into groups. Same with earlier results, the 2, 4, and 8 group models
show better performances than the 1 group model. Interestingly, although the 8 group model has a wider
hidden dimension than others, the model shows worse performance than the 2 and 4 group models. The
4 group model turns out the best performer around 4.2M parameter size.

4.6 Comparison Against Prior Character-level Language Models

We compare the Group-Transformer against existing character-level language models using under 50M
parameters in Table 4. Although the number of embedding vectors for characters is much lower than
word-level embeddings (Sukhbaatar et al., 2019a), the total parameters of most previous models have
been more than 10M parameters. Recently, the reported transformer models achieved under 1.2 bpc for
enwik8 and text8, but the models under 10M parameters have not been well explored. When developing
Group-Transformer with more than 40M parameters, the model fails to show superior performance than
others, even though it is wider and deeper than the prior works. However, when exploring transformers
with 8M and 4M parameters, the Group-Transformers outperform the scale-downed transformer with
9 and 6 layers. The results indicate that the group strategy shows superior performance in modeling a
lightweight Transformer by holding high-dimensional feature space under the same parameter size.

4.7 Extension to Word-level Language Modeling

The proposed method is focused on developing character-level language models, but the model can
be applied to other NLP tasks using the Transformer architecture. When it comes to word-level lan-
guage modeling, compressing the word embedding layer becomes the most important part of designing
a lightweight language model rather than other layers in Transformer. Therefore, we set an embedding
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enwik8 text8

Model # Params bpc # Params bpc

Generic TCN (Bai et al., 2018) - - 5M 1.45
LSTM 1800 units (Mujika et al., 2017) 14M 1.40 - -
small HyperLSTM (Ha et al., 2017) 19M 1.35 - -
RHN - depth 10 (Zilly et al., 2017) 21M 1.30 - -
small mLSTM (Krause et al., 2016) 22M 1.28 20M 1.59
FS-LSTM-4 (Mujika et al., 2017) 27M 1.28 - -
HM-LSTM (Chung et al., 2016) 35M 1.32 35M 1.29
TransformerXL - 12L (Dai et al., 2019) 41M 1.06 - -
Transformer - 12L (Al-Rfou et al., 2019) 44M 1.11 44M 1.18
4 Group-TransformerXL - 16L 43M 1.09 42M 1.18

TransformerXL - 9L 8.1M 1.180 8.0M 1.270
4 Group-TransformerXL - 9L 7.8M 1.169 7.7M 1.265

TransformerXL - 6L 4.5M 1.259 4.5M 1.331
4 Group-TransformerXL - 6L 4.5M 1.232 4.4M 1.301

Table 4: Comparison with the prior character-level language models on enwik8 and text8. We report
bit-per-character (bpc) for test sets as well as the number of parameters.

Model Params Params∗ ppl

TransformerXL 6L 139M 4.5M 37.3
4 Group-TransformerXL 6L 139M 4.5M 36.6

TransformerXL 5L 139M 4.6M 37.3
4 Group-TransformerXL 5L 139M 4.5M 36.6

TransformerXL 4L 139M 4.5M 37.4
4 Group-TransformerXL 4L 139M 4.5M 37.0

Table 5: Comparison with the prior word-level language models on wikitext-103. We report perplexity
(ppl) for test sets as well as the number of parameters. Params∗ indicates the number of parameters
except for word embeddings.

dimension as 500 and adjusted the number of layers and the hidden dimension to get models with the
same embedding (134M) and model parameters (4.5M). For the bottleneck layer in the position-wise
feed-forward layer, we used 4 times larger dimension than each hidden dimension. Table 5 compares
TransformerXL and the Group-Transformers. In all settings, the Group-Transformers show better per-
formances than the baselines.

5 Conclusion

Recently, remarkable progress has been made in character-level language modeling by Transformer.
However, the models generally have improved performance in proportion to the size of the parameters,
and training and reasoning about them required high computational costs. We argue that an efficient
scale-down method is required because big models cannot be used in a limited computational environ-
ment. Group-Transformer has been developed to meet the requirement. The proposed model reduces
computations and parameter sizes of Transformer while keeping its feature dimension. When applying
Group-Transformer on enwik8 and text8, we found that Group-Transformer achieves better performances
than Transformer-XL in small-scale experimental settings. Further analysis has proved the effectiveness
of the group strategy to reduce computational resources.
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