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Abstract

This paper proposed a new subword segmentation method for neural machine translation, “Bilin-
gual Subword Segmentation,” which tokenizes sentences to minimize the difference between the
number of subword units in a sentence and that of its translation. While existing subword seg-
mentation methods tokenize a sentence without considering its translation, the proposed method
tokenizes a sentence by using subword units induced from bilingual sentences; this method could
be more favorable to machine translation. Evaluations on WAT Asian Scientific Paper Excerpt
Corpus (ASPEC) English-to-Japanese and Japanese-to-English translation tasks and WMT14
English-to-German and German-to-English translation tasks show that our bilingual subword
segmentation improves the performance of Transformer neural machine translation (up to +0.81
BLEU).

1 Introduction

Subword units have recently been widely used in neural machine translation (NMT) to solve open vocab-
ulary problems. Byte Pair Encoding (BPE) (Sennrich et al., 2016) is a dominant subword segmentation
method for NMT, but it is designed for segmented languages in which words are divided by spaces.
Kudo (2018) has proposed a subword segmentation method based on a unigram language model, that
can be applied to non-segmented languages such as Chinese and Japanese. Both BPE and the unigram
language model tokenize sentences by minimizing the number of segments under a limitation on sub-
word vocabulary size, which relies on a data compression principle. In these existing segmentations, a
sentence is segmented without considering its translation, and therefore the segmented sentence might
not be optimal for NMT.

This paper proposes a new subword segmentation method for NMT, “Bilingual Subword Segmenta-
tion,” which tokenizes sentences by using subword units induced from bilingual sentences. The proposed
method is based on a unigram language model like Kudo (2018) because we aim to improve translation
performance for non-segmented languages1. In particular, the proposed segmentation tokenizes bilin-
gual sentences (i.e., training data for NMT) by selecting subword sequence pairs with similar numbers
of segments, from segmentation candidates of the source and target language sentences obtained by a
unigram language model. For segmentation of monolingual source language sentences (i.e., test data for
NMT), an LSTM-based subword segmenter for the source language is preliminarily learned from the
source side of segmented bilingual sentences, and monolingual source language sentences are tokenized
by the learned subword segmenter.

Our bilingual segmentation encourages one-to-one mappings between segments across languages be-
cause it minimizes the difference between the number of segments in a sentence and that of its translation.
As a result, subword units segmented by our bilingual segmentation can be expected to be more helpful
for NMT than conventional subword units. For example, consider the situation in which two Japanese

This work is licensed under a Creative Commons Attribution 4.0 International License. License details: http://
creativecommons.org/licenses/by/4.0/.

1Although we focus on translation for non-segmented languages, we also examined and confirmed our proposed segmenta-
tion’s effectiveness on translation for segmented languages (i.e., English-German), which is described in Section 5.6.

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
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compound words “設計法 (design method)” and “計測装置 (measurement instrument)” occur many
times in training data. When a conventional subword segmentation method is used, each must be merged
into one subword unit because the conventional method minimizes the number of segments according
to the data compression principle. As a result, these segments in training data are useless for translation
of “計測法 (measurement method)”. On the other hand, when the proposed segmentation method is
used, these segments must be decomposed into “設計 (design) 法 (method)” and “計測 (measurement)
装置 (instrument)”, respectively, because our method puts the number of Japanese subword units near
the number of English subword units (i.e., 2). Thus, segmented training data would be useful for the
translation of “計測 (measurement)法 (method)” because an NMT model can learn translations of “計測
(measurement)” and “法 (method)” from constituents of “計測 (measurement)装置 (instrument)” and “
設計 (design)法 (method)”, respectively.

We evaluate the proposed subword segmentation method on WAT Japanese-to-English (Ja-En) and
English-to-Japanese (En-Ja) translation tasks with the ASPEC (Nakazawa et al., 2016). We also evaluate
our proposed method on WMT14 English-to-German (En-De) and German-to-English (De-En) trans-
lation tasks. These experiments show that the proposed subword segmentation method improves the
performance of Transformer NMT (Vaswani et al., 2017) on all translation tasks (up to 0.81 point im-
provement in BLEU).

2 Subword Segmentation Based on the Unigram Language Model

This section describes the subword segmentation method based on the unigram language model (Kudo,
2018), that is the basis of our proposed segmentation method. The unigram language model assumes that
each subword occurs independently and that the occurrence probability of a subword sequence P (x) is
formulated as follows:

P (x) =

N∏
i=1

p(xi), (1)

∀i xi ∈ V,
∑
x∈V

p(x) = 1, (2)

where x = (x1, x2, . . . , xN ) is a subword sequence and V is a vocabulary set. Each subword occurrence
probability p(xi) is estimated by an EM algorithm that maximizes the following marginal likelihood
Llm:

Llm =

|D|∑
s=1

log(P (X(s))) =

|D|∑
s=1

log

 ∑
x∈S(X(s))

P (x)

 , (3)

where D is a parallel corpus, X(s) is the sth source or target language sentence of D, and S(X(s)) is a
set of subword candidates built from X(s).

The subword sequence with the highest occurrence probability is obtained by the following equation:

x∗ = arg max
x∈S(X)

P (x), (4)

where X is the input sequence. Note that k-best subword sequences can be obtained on the basis of
probability P (x|X) calculated by the unigram model, and a sequence with higher probability tends to
be shorter because the probability of a subword sequence is the product of each subword’s likelihood.

The unigram language model’s advantages are that it can be learned from raw sentences and that it can
tokenize sentences in a non-segmented language such as Chinese and Japanese without requiring a word
segmenter.

3 Proposed Model: Bilingual Subword Segmentation

This section proposes “bilingual subword segmentation,” which tokenizes sentences by using subword
units induced from bilingual sentences. In particular, our proposed segmentation tokenizes sentences so
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ê(s)

}|D|

s=1

Training Data: D

NMT Model
Character-Based

BiLSTM
training from

D̂ =
{
(f̂

(s)
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Figure 1: Overview of bilingual subword segmentation

as to minimize the difference between the number of a sentence’s subword units and that of its translation.
In segmentation of training data for NMT, a sentence can be tokenized while referring to its translation
(i.e., a sentence in the other language). On the other hand, in segmentation of test data for NMT, transla-
tions cannot be given. To address the different situations, we propose a bilingual subword segmentation
method for training data and test data, as illustrated in Figures 1(a) and (b), respectively. Note that our
proposed method does not depend on an NMT model or a training method; therefore, it can be applied
only by replacing a conventional subword segmentation with our proposed subword segmentation.

3.1 Segmentation for Training Data

In segmentation of training data D, the proposed bilingual subword segmentation tokenizes a bilingual
sentence (f, e) ∈ D by sampling a subword sequence pair with similar numbers of segments, from seg-
mentation candidates obtained by the unigram language model. The proposed subword segmentation
first obtains k-best segmentation candidates of a source language sentence and its target language sen-
tence, Bk(f) and Bk(e), by using the unigram language model described in Section 2, and then finds
the following subword segmentation pair (f̂ , ê) and outputs them as subword sequences of the bilingual
sentence (f, e).

(f̂ , ê) =

{
(û, e∗) if len(f∗) < len(e∗)

(f∗, û) otherwise
, (5)

where len() is the function that returns the number of subword tokens, and f∗/e∗ is the subword se-
quence with the highest probability (i.e., the best subword sequence by the unigram language model)
of the source/target language sentence. Let v∗ denote the longer one of f∗ and e∗. û is obtained by
searching a subword sequence with the highest probability from subword candidates that have lengths
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closest to v∗ as follows:

û = arg max
u∈T

P (u), (6)

T = arg min
u∈Bk

| len(u)− len(v∗)|, (7)

Bk =

{
Bk(f) if len(f∗) < len(e∗)

Bk(e) otherwise
. (8)

An NMT model with our bilingual subword segmentation is trained from segmented training data D̂ =

{(f̂ (s)
, ê(s))}|D|

s=1 where each bilingual sentence is segmented by the bilingual segmentation method.

3.2 Segmentation for Test Data
In segmentation of a source language sentence f of test data, the sentence’s translation (i.e., e) is un-
known. To tokenize a sentence without its translation, our proposed method preliminarily trains a
character-based bidirectional LSTM (BiLSTM) segmenter for the source language from the source side

of training data D̂ segmented by our bilingual segmentation method (i.e., {f̂ (s)}|D|
s=1) (see Section 3.1).

Then, a monolingual source language sentence f is tokenized by using the trained BiLSTM-based seg-
menter.

The character-based BiLSTM segmenter identifies subword boundaries of an n-character sequence
c = (c1, c2, . . . , cn). The structure of the segmenter is as follows:

z = Embedding(c), (9)

h = BiLSTM(z), (10)

b = softmax(hW ), (11)

where Embedding() is a character embedding layer, z is the d-dimensional character embedded rep-
resentation of c, BiLSTM() is a character-based BiLSTM layer, h is the hidden vectors of the BiL-
STM, softmax() is a softmax function, b is the output of BiLSTM, and W ∈ Rd×{0,1} is a param-
eter matrix that projects the dimension of h into the boundary tag dimension. Note that the vector
bt = (bt,0, bt,1) represents the probability distribution of whether ct is a subword’s beginning point (bt,0)
or not (bt,1). The character-based BiLSTM is trained by maximizing the following equation Lsegment for

all f̂ ∈ {f̂ (s)}|D|
s=1:

Lsegment =
n∑

t=1

log bt,rt , (12)

where rt =

{
0 if ct is the beginning point of a subword
1 otherwise

. (13)

In a source language’s sentence segmentation, the k-best subword segmentations Bk(f) of the input
source language sentence f are first obtained by using the unigram language model; then, the segmenta-
tion score (i.e., score(f)) for each segmentation sequence of segmentation candidates (i.e., f ∈ Bk(f))
is calculated by the learned character-based BiLSTM as follows:

score(f) =
n∑

t=1

log bt,rt . (14)

Finally, the subword sequence with the highest score is selected:

f̂
∗
= arg max

f∈Bk(f)

score(f). (15)

An NMT model with our bilingual subword segmentation translates the segmented source language
sentence f̂

∗
.
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Ja-En En-Ja
Unigram LM 28.58 43.19
Subword Regularization 28.86 43.10
BiSW (Proposed) †29.39 †43.29

Table 1: Translation performance on ASPEC data (BLEU(%))

4 Experiment

4.1 Setup

In our experiments, we compared the proposed “bilingual subword segmentation” with the “unigram
language model” (Kudo, 2018). We also compared it with “subword regularization” (Kudo and Richard-
son, 2018), which is a training method based on multiple subword candidates obtained by the unigram
language model. We used Sentencepiece2 as the unigram language model implementation to obtain
multiple subword candidates. We used the Transformer base (Vaswani et al., 2017) model as the NMT
system for all experiments.

Data: We evaluated translation performance on WAT ASPEC Ja-En and En-Ja translation
tasks3 (Nakazawa et al., 2016). We set vocabulary size to 16,000 separately for each source and tar-
get language. We set batch size to 10,000 tokens. We used the first 1.5 million translation pairs of
training data in training and preprocessed the dataset according to the data preparation process for the
WAT baseline system4. The number of parallel sentence pairs in the development and test sets were
1,790 and 1,812, respectively.

Hyperparameters: For all NMT models, we used the Adam optimizer (Kingma and Ba, 2014) with
β1 = 0.9, β2 = 0.98. The learning rate was warmed up over the first 4,000 steps to a peak value of 5e-4;
then, it was decreased proportionally to the inverse square root of the step number (Vaswani et al., 2017).
All NMT models were trained for 100k updates. The dropout probability was set to 0.1. We used label
smoothed cross entropy (Szegedy et al., 2016) for NMT and set label smoothing ϵ to 0.1. In decoding,
we averaged the last 5 checkpoints for each 1,000 updates before the end of training. We used beam
search with a beam size of 4 and length penalty α = 0.6 (Wu et al., 2016).

In the proposed model, the hyperparameter k, the number of candidates obtained by a unigram lan-
guage model, was tuned on development data and set to 5 (i.e., k = 5). We used the character-based
BiLSTM with an embedding size d = 256 and 2 encoder layers. All parameters of a character embed-
ding layer, BiLSTM encoder layers, and an output layer were uniformly initialized as [−0.1, 0.1]. We
trained the character-based BiLSTM for 10 epochs using the Adam optimizer with β1 = 0.9, β2 = 0.98.
The learning rate was set to 5e-4, the dropout probability was set to 0.1, and the batch size was set to 256
sentences.

In subword regularization, we used 1-best decoding, which translates a segment sequence with the
highest score of the unigram language model for a fair comparison with our proposed method because
an NMT model with our segmentation method translates one segmented sequence.

4.2 Results

Table 1 shows our experimental results: “Unigram LM,” “Subword Regularization,” and “BiSW” indi-
cate NMT models using the unigram language model, subword regularization, and our proposed method,
respectively. Translation performance was evaluated by BLEU (Papineni et al., 2002). We followed WAT
Automatic Evaluation Systems5. The statistical significance test was performed by paired bootstrap re-

2https://github.com/google/sentencepiece
3http://lotus.kuee.kyoto-u.ac.jp/ASPEC/
4http://lotus.kuee.kyoto-u.ac.jp/WAT/WAT2019/baseline/dataPreparationJE.html
5http://lotus.kuee.kyoto-u.ac.jp/WAT/evaluation/index.html#automatic_evaluation_

systems.html

https://github.com/google/sentencepiece
http://lotus.kuee.kyoto-u.ac.jp/ASPEC/
http://lotus.kuee.kyoto-u.ac.jp/WAT/WAT2019/baseline/dataPreparationJE.html
http://lotus.kuee.kyoto-u.ac.jp/WAT/evaluation/index.html#automatic_evaluation_systems.html
http://lotus.kuee.kyoto-u.ac.jp/WAT/evaluation/index.html#automatic_evaluation_systems.html
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Precision Recall F-measure
Ja 97.05 97.44 97.24
En 98.82 99.22 99.02

(a) Segmentation performance of the character-based BiLSTM
segmenter on ASPEC test data

Ja-En En-Ja
BiSW 29.39 43.29
Oracle 29.49 43.49

(b) Comparison with the translation using gold bilingual seg-
mentation on ASPEC data (BLEU(%))

Table 2: Comparison with gold bilingual segmentation

Ja-En En-Ja
BiSW 29.39 43.29
BiSW w/o BiLSTM 28.80 43.00

Table 3: Performance of translation without our character-based BiLSTM segmenter on ASPEC data
(BLEU(%))

sampling (Koehn, 2004). “†” in Table 1 indicates that improvement of “BiSW” over corresponding
baselines is statistically significant (p ≤ 0.05).

As shown in the table, our proposed model “BiSW” outperformed both baseline models, “Unigram
LM” and “Subword Regularization,” in both language directions. “BiSW” improved by 0.81 and 0.10
BLEU points against “Unigram LM” on Ja-En and En-Ja, respectively, and by 0.53 and 0.19 BLEU
points against “Subword Regularization” on Ja-En and En-Ja, respectively. These statistically significant
improvements demonstrate our bilingual subword segmentation’s effectiveness.

5 Discussion

5.1 Comparison with Oracle Bilingual Segmentation

We evaluated the segmentation performance of our character-based BiLSTM segmenter on test data
through comparison to gold bilingual segmentations, which are obtained by applying our proposed
method for training data, described in Section 3.1, to the test data with references (i.e., bilingual sen-
tences). Table 2(a) shows that our character-based BiLSTM segmenter achieved high segmentation per-
formance.

We also evaluated the performance of the oracle translation, which translates source language sen-
tences with gold bilingual segmentations. Note that although references are used for segmenting source
language sentences, they are not used in translation. The oracle translation performance provides an
upper bound of our proposed method’s performance. In Table 2(b), “Oracle” indicates translation using
gold bilingual segmentations. As shown in the table, Oracle achieved higher performance than BiSW,
but differences were small. In particular, BiSW decreased only by 0.10 and 0.20 BLEU points on Ja-En
and En-Ja, respectively, perhaps because our character-based BiLSTM segmenter could achieve high
segmentation performance, as shown in Table 2(a).

5.2 Necessity of Character-Based BiLSTM Segmenter

Our proposed method requires a character-based BiLSTM segmenter for segmentation of monolingual
sentences (i.e., test data). To confirm the necessity of the character-based BiLSTM segmenter in testing,
we evaluated translation performance when the NMT model trained from bilingual-subword-segmented
training data translates the best subword sequence obtained by the unigram language model (i.e., f∗)
without using the BiLSTM-based segmenter, denoted by “BiSW w/o BiLSTM.” When segmenting train-
ing data of “BiSW w/o BiLSTM,” v∗ is fixed to f∗ (i.e., source-side best segmentation by the unigram
language model) to bridge the gap between training and testing. In particular, bilingual segmentation of
“BiSW w/o BiLSTM” uses the best subword sequence obtained by the source-side unigram language
model and searches only the target-side subword sequence with the length closest to the source-side
sequence.

As shown in Table 3, translation performance decreases when the character-based BiLSTM segmenter
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Unigram LM BiSW
helper help er
basically basic ally
focused focus ed
popularization popular ization
第三 者 第 三 者
(the third) (person) (the) (third) (person)

骨密度 骨 密度
(bone density) (bone) (density)

設計法 設計 法
(design method) (design) (method)

(a) Examples of subword units on training data

Unigram LM BiSW
密度分布 密度 分布
(density distribution) (density) (distribution)

分散型 分散 型
(dispersion type) (dispersion) (type)

透 水性 透 水 性
(transparent) (water-based) (transparent) (water) (property)

(b) Examples of subword units on test data

Table 4: Examples of subword units on ASPEC Ja-En
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Figure 2: Sensitivity to hyperparameter k (translation performance on development data)

is not used. In particular, “BiSW w/o BiLSTM” decreases by 0.59 and 0.29 BLEU points on Ja-En
and En-Ja against BiSW, respectively. These results indicate that bilingual optimization via searching
only for target language sentences is not enough, and a bidirectional search between source and target
languages and the character-based BiLSTM segmenter are needed for NMT when performance of the
character-based BiLSTM segmenter is high, as shown in Section 5.1.

5.3 Examples of Bilingual Subword Segmentation

In this section, we discuss differences between subword units obtained by the conventional method,
“Unigram LM,” and those obtained by the proposed method. Table 4(a) shows examples of subword units
extracted from training data and obtained by each method. As shown in Table 4(a), our segmentation
method decomposed a sequence into subword units that can be mapped into the other side’s subword
units, an action that could be helpful to train an NMT model, while the conventional method merged
them into one subword unit.

Table 4(b) shows examples of subword units in Ja-En test data, (i.e., Japanese sentences in test data).
As shown in Table 4(b), also on test data, our segmentation method successfully decomposed sequences
into subword units that could be handled easily by one-to-one translation even though our segmentation
method for test data does not refer to the other side’s sentences (i.e., English translations).

5.4 Sensitivity to Hyperparameter k

Our proposed model has the hyperparameter k. In this section, we evaluate the sensitivity of our proposed
method to the hyperparameter k. Figure 2 shows translation performance with varied k on development
data in the ASPEC Ja-En task. In particular, we evaluated the performance of our proposed model when
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Ja-En En-Ja
Unigram LM 28.58 43.19
BiSW (# of segments) 29.39 43.29
BiSW (likelihood) 29.28 43.09

Table 5: Comparison with likelihood-based bilingual subword segmentation on ASPEC data (BLEU(%))

train test
Unigram LM 7.83 6.07
BiSW (# of segments) 6.74 4.98
BiSW (likelihood) 7.10 5.38

Table 6: Average of the difference between numbers of segments in bilingual sentences on the ASPEC
Ja-En task

k = [2, 10], 15, 20, 50, and 100.
As Figure 2 illustrates, although there were some exceptions, our proposed model’s translation perfor-

mance tends to improve until k exceeds 50.

5.5 Likelihood-based Bilingual Subword Segmentation

As Kudo (2018) has mentioned, “the unigram language model is reformulated as an entropy encoder
that minimizes the total code length for the text. According to Shannon’s coding theorem, the optimal
code length for a symbol s is − log ps, where ps is the occurrence probability of s.” From observation, we
hypothesized a relationship between the number of segments and the likelihood of a subword sequence;
therefore, we evaluated the bilingual subword segmentation method that selects subword sequence pairs
on the basis of the likelihood obtained by the unigram language model rather than on the number of
segments in the sentence. In particular, the likelihood-based method replaces len() in Equations 5-8
with − logP () calculated by the unigram language model so as to minimize the difference between the
likelihood of a sentence and that of its translation.

In Table 5, “BiSW (# of segments)” and “BiSW (likelihood)” indicate the bilingual segmentation
method based on number of segments and that based on likelihood, respectively. As shown in Table 5,
the likelihood-based method outperforms the baseline model, Unigram LM, on Ja-En, but it is worse
than the proposed method based on the number of segments in both language directions perhaps because,
although the likelihood and the number of segments are related, they do not completely match, and the
degree of a relationship might depend on the unigram language model’s performance.

We calculated the average of the difference between a sentence’s number of segments and that of its
translation on training/test data. As in Table 6, differences in our two bilingual segmentation methods
are smaller than the difference in the baseline Unigram LM on both training and test data; moreover,
the proposed method based on number of segments has a smaller difference than the likelihood-based
method.

5.6 Effectiveness for Segmented Language Pair

Although we focused on translation of non-segmented languages, we also examined our proposed
method’s effectiveness on a segmented language pair in this section. In particular, we evaluated our
proposed method on WMT14 En-De and De-En translation tasks6.

In these tasks, we set vocabulary size to 37k with a joined dictionary. The source-side and target-
side embedding layers of an NMT model were shared. We set batch size to 25k tokens. After subword
segmentation, we removed from the training data sentences longer than 250 subword units and sentence
pairs with a source/target length ratio exceeding 1.5. The hyperparameter k of our proposed method was
set to 2, tuned on development data.

6https://www.statmt.org/wmt14/translation-task.html

https://www.statmt.org/wmt14/translation-task.html
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En-De De-En
Unigram LM 26.45 30.62
BiSW 26.77 30.64

Table 7: Effectiveness of our proposed method on WMT14 En-De and De-En tasks (BLEU(%))

Table 7 shows evaluation results on WMT14 En-De and De-En tasks. Our proposed model “BiSW”
was better than the baseline model “Unigram LM” in both language directions. In particular, “BiSW”
improved by 0.32 and 0.02 BLEU points against “Unigram LM” on En-De and De-En, respectively.
These results demonstrate that our proposed method is also effective for a segmented language pair.

6 Related Work

BPE (Sennrich et al., 2016) and the unigram language model (Kudo, 2018) are widely used as subword
segmentation methods. BPE is a dictionary-based simple subword segmentation algorithm in which the
most frequent adjacent character pairs are merged until they exceed the given vocabulary size. BPE
is widely used in many NMT systems; however, since BPE is a greedy and deterministic algorithm,
obtaining multiple subword candidates is not possible.

The unigram language model is a likelihood-based subword segmentation algorithm. Each subword
occurrence probability is estimated by the EM algorithm. The unigram language model has a more com-
plicated algorithm than BPE, but it has the advantages that it can obtain multiple subword candidates
based on likelihood and that it can be learned from raw sentences without pre-tokenization. Sentence-
Piece (Kudo and Richardson, 2018) is an implementation of the unigram language model we used.

Subword regularization (Kudo, 2018) is an NMT training method that uses multiple subword can-
didates obtained by the unigram language model and maximizes the marginal likelihood of sampled
multiple subword candidates. This method requires on-the-fly subword sampling in training; therefore,
the training process for NMT needs to be modified to incorporate the method. In addition, a sufficiently
large number of epochs is required to obtain this method’s effectiveness. In contrast, our proposed
method does not require changing the NMT training process and does not need a large number of epochs.
BPE-dropout (Provilkov et al., 2020) is a method that extends BPE to use subword regularization. In this
method, multiple subword candidates are obtained by probabilistically dropping merged characters. Note
that BPE-dropout cannot obtain k-best candidates based on likelihood like P (x|X).

Cherry et al. (2018) have shown that NMT that translates character sequences has achieved higher
translation performance than word-based and subword-based NMT. However, they have mentioned that
character-based NMT causes problems of modeling and computational time. We believe that our pro-
posed method maintains balance between the advantages and disadvantages of character-based NMT
(i.e., translation performance vs. modeling and computational cost).

Ataman et al. (2017), Ataman and Federico (2018b), and Huck et al. (2017) have proposed linguistic-
based subword segmentation algorithms. Ataman et al. (2017) and Ataman and Federico (2018b) have
shown that their proposed “Linguistically Motivated Vocabulary Reduction (LMVR),” which is based on
unsupervised morphology learning, outperforms BPE. Huck et al. (2017) have shown that incorporating
linguistic knowledge, such as stemming and compound words, into subword segmentation improves
NMT performance. Ataman and Federico (2018a) have further shown that compositional representations
learned from character n-grams improve translation performance for morphologically-rich languages.

7 Conclusion

In this paper, we proposed a new subword segmentation method for NMT, “Bilingual Subword Segmen-
tation,” which tokenizes sentences by using subword units induced from bilingual sentences. Experi-
ments on WAT ASPEC Ja-En and En-Ja tasks and WMT14 En-De and De-En translation tasks show that
the proposed method improves Transformer NMT translation performance. Through experiments and
discussions, we found that translation performance improves by tokenizing sentences so as to minimize
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the difference between the number of subword units of a sentence and that of its translation. In future
work, we would like to confirm our proposed method’s effectiveness for other language pairs.
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