
Proceedings of the 28th International Conference on Computational Linguistics, pages 3467–3478
Barcelona, Spain (Online), December 8-13, 2020

3467

Federated Learning for Spoken Language Understanding

Zhiqi Huang1, Fenglin Liu1, Yuexian Zou1,2∗

1ADSPLAB, School of ECE, Peking University, Shenzhen, China
2Peng Cheng Laboratory, Shenzhen, China

{zhiqihuang, fenglinliu98, zouyx}@pku.edu.cn

Abstract

Recently, spoken language understanding (SLU) has attracted extensive research interests, and
various SLU datasets have been proposed to promote the development. However, most of the
existing methods focus on a single individual dataset, the efforts to improve the robustness of
models and obtain better performance by combining the merits of various datasets are not well
studied. In this paper, we argue that if these SLU datasets are considered together, different
knowledge from different datasets could be learned jointly, and there are high chances to pro-
mote the performance of each dataset. At the same time, we further attempt to prevent data
leakage when unifying multiple datasets which, arguably, is more useful in an industry setting.
To this end, we propose a federated learning framework, which could unify various types of
datasets as well as tasks to learn and fuse various types of knowledge, i.e., text representations,
from different datasets and tasks, without the sharing of downstream task data. The fused text
representations merge useful features from different SLU datasets and tasks and are thus much
more powerful than the original text representations alone in individual tasks. At last, in order to
provide multi-granularity text representations for our framework, we propose a novel Multi-view
Encoder (MV-Encoder) as the backbone of our federated learning framework. Experiments on
two SLU benchmark datasets, including two tasks (intention detection and slot filling) and fed-
erated learning settings (horizontal federated learning, vertical federated learning and federated
transfer learning), demonstrate the effectiveness and universality of our approach. Specifically,
we are able to get 1.53% improvement on the intent detection metric accuracy. And we could
also boost the performance of a strong baseline by up to 5.29% on the slot filling metric F1. Fur-
thermore, by leveraging BERT as an additional encoder, we establish new state-of-the-art results
on SNIPS and ATIS datasets, where we get 99.33% and 98.28% in terms of accuracy on intent
detection task as well as 97.20% and 96.41% in terms of F1 score on slot filling task, respectively.

1 Introduction

In recent years, Spoken Language Understanding (SLU) technology, which typically involves intent
detection and slot filling, plays a crucial part in goal-oriented dialogue systems. The intent detection is
treated as an utterance classification problem, which can be modeled using various classifiers based on
deep neural networks (Liu and Lane, 2016; Zhang et al., 2016a; Zhang et al., 2017; Xia et al., 2018). The
slot filling task can be formulated as a sequence labeling problem, and one of the popular approaches with
good performance is using CRF and CNN (Xu and Sarikaya, 2013). The slots represent the word-level
information while the intent stands for the sentence-level information (E et al., 2019). These two tasks
are normally considered as parallel tasks but may have cross-impact on each other (Xu and Sarikaya,
2013). Table 1 gives examples of the two tasks in two utterances, whose intents are GetWeather and
SearchCreativeWork and slots are recorded as BIO format.

Despite the impressive results, most of the existing frameworks focus on a single individual dataset
and are directly trained on the specific individual target dataset. The data-specific model may well suffer

∗Corresponding Author.
This work is licensed under a Creative Commons Attribution 4.0 International License. License details: http:

//creativecommons.org/licenses/by/4.0/.



3468

Utter.1 it is colder faraway from my current spot
Slots O O B − condition temperature B − spatial relation O O B − current location I − current location

Intent GetWeather

Utter.2 find a tv show called the traffic policeman
Slots O O B − object type I − object type O B − object name I − object name I − object name

Intent SearchCreativeWork

Table 1: Utterances with intents and slots annotation (BIO format) sampled from the SNIPS dataset.

from overfitting when the data in the downstream dataset is scarce. In addition, because the design and
training of the model are data-specific, it is difficult for the model to transfer the knowledge learned from
the target dataset to the other dataset directly, where the two datasets may be completely different. It
means that a well-trained model on the target dataset may have poor performance on the other dataset,
which indicates the current models suffer from poor robustness. In short, we argue that for the SLU task,
studies used to model on a single individual dataset are not friendly to the model robustness. Intuitively,
learning from multiple datasets at the same time will improve the performance and robustness of the
model, compared to the single dataset training. Thus, it is reasonable to combine multiple datasets
for modeling in SLU. A multi-task learning framework, which is used for combining multiple tasks in
the previous works (Qin et al., 2019; E et al., 2019), may have the potential to unify multiple datasets,
though, it may have data leakage problems, which is unacceptable for collaborative task training between
multiple institutions. What’s more, the multi-task framework is a special case of one of our federated
learning framework, i.e., vertical federated learning, which will be discussed in the following paragraph.

Recently, Konecný et al. (2016a), Konecný et al. (2016b) and McMahan et al. (2017) propose an
emerging artificial intelligence technology, i.e., federated learning, whose goal is to train a high qual-
ity centralized model based on datasets that are distributed across multiple clients without sharing the
clients’ data. Inspired by the success of federated learning, we introduce a federated learning frame-
work to perform the SLU task. In implementations, we treat each sub-task as a client and propose an
MV-Encoder as the centralized model. The motivation for proposing the MV-Encoder into our federated
learning framework stems from the fact that a key goal in the SLU task is to effectively utilize the poten-
tial linguistic knowledge of the sentence and capture multi-granularity text representations for the input
text. Thus, inspired by Zhao et al. (2019), we attempt to obtain multi-granularity text representations for
our framework. To this end, our MV-Encoder consists of four sub-encoders, i.e., Position-wise Encoder,
Local Encoder, Global Encoder and Time Series Encoder. Finally, we conduct extensive experiments
on three federated learning settings, i.e., horizontal federated learning, vertical federated learning and
federated transfer learning, and two benchmark datasets, i.e., SNIPS and ATIS, to validate the effective-
ness and the universality of our approach. Moreover, BERT (Devlin et al., 2019), a powerful pre-trained
language model, is employed to further boost the performance of our framework.

Overall, the main contributions of our work are as follows:

• We introduce a federated learning framework to unify various SLU datasets and perform the SLU
task. In the implementation, our framework could unify various types of knowledge, i.e., text
representations, from different datasets and tasks, without the sharing of downstream task data.

• We propose the MV-Encoder to implement the centralized model and learn multi-granularity text
representations, which provides a solid bias for our proposed federated learning framework.

• We implement our framework on three federated learning settings. The experiments on two SLU
datasets verify the effectiveness and the universality of our approach. More encouragingly, we
achieve the best performances on the intent detection task of the SNIPS and the ATIS datasets
except for the pre-trained BERT model, which further proves the effectiveness of our approach.

2 Related Work

2.1 Intent Detection and Slot Filling
Recently, user intent detection models (Liu and Lane, 2016; Zhang et al., 2016a; Xia et al., 2018) are
proposed to classify user intents given their diversely expressed utterances in the natural language. As a
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text classification task, the great performance of sentence level intent detection often depends on hidden
representations learned from the intermediate layers through a variety of non-linear transformations.
While the intent stands for the sentence level information, the slot represents the word level information
which means it annotates the utterance with finer granularity (E et al., 2019). The slot filling is usually
treated as a sequential labeling task. A recurrent neural network, such as Gated Recurrent Unit (GRU)
or Long Short-term Memory Network (LSTM), is used to learn context-aware word representations,
and traditional approaches used Conditional Random Fields (CRF) to annotate each word based on its
slot type (Raymond and Riccardi, 2007). What’s more, models based on the neural network as well as
its extensions enhanced the performance on the slot filling task and outperform traditional CRF based
models, and some excellent and interesting works with significant improvement such as the self-attention
mechanisms for CRF-free sequential labeling are also introduced (Shen et al., 2018; Tan et al., 2018).

2.2 Federated Learning
Federated Learning (FL) is an emerging artificial intelligence technology. Its design goal is to develop
efficient machine learning algorithms among multiple participants on the premise of ensuring informa-
tion security of terminal data and personal data privacy during data exchange (Konecný et al., 2016a;
Konecný et al., 2016b; McMahan et al., 2017; Liu et al., 2020). Take the scenario that companies A
and B (two data owners) as an example to introduce the architecture of federated learning. Suppose that
companies A and B want to jointly train a machine learning model, and they have relevant data for their
users independently. Due to data privacy protection and security considerations, A and B cannot directly
exchange data and in this situation, they could use the federated learning system to build models. We
call each company participating in the jointly modeling as a participant, and according to the different
data distribution (datasets) between multiple participants, the federated learning is divided into three cat-
egories: horizontal federated learning, vertical federated learning, and federated transfer learning. This
paper describes the application of federated learning in spoken language understanding.

2.3 Multi-Task Learning
Multi-task learning (Caruana, 1997) is a sub-field of transfer learning that aims to solve multiple different
tasks at the same time, by taking advantage of the similarities between different tasks. It is a machine
learning algorithm and makes no requirements for data security and privacy.

Recently, E et al. (2019), Qin et al. (2019) and Zhou et al. (2020) tried to apply multi-task learning
framework to the spoken language understanding problem, they design a model for multi-task learning by
strengthening the communication of the downstream SLU task in the decoder layer. In their approach, an
input is shared by all the tasks, thus they must create a dataset specially designed for multi-task learning,
and multiple objectives are given to the identical inputs. While our framework can not only improve the
learning efficiency but also it can read the input sentences from different datasets and carry out different
downstream tasks which we will discuss in a while.

3 Approach

In this section, we focus on the basic module of our architecture. Firstly, we introduce an MV-Encoder
module to extract the multi-granularity sequence information from several views, which is shown in
Figure 1. Then, we describe the intent decoder and slot decoder in the decoding stage. Finally, we
introduce the implementation of three federated learning settings and the corresponding datasets on our
experiments. The architecture of our federated learning framework is shown in Figure 2.

3.1 Multi-view Encoder
In this section, we introduce a feature fusion module named MV-Encoder. In our framework, intent
detection task and slot filling task share the same MV-Encoder, in which the Position-wise Encoder,
Local Encoder, Self-attention Encoder and Time Series Encoder are jointly used to encode the input
sentences. The MV-Encoder and its components are shown in Figure 1.
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3.1.1 Position-wise Encoder

Position-wise 
Encoder

Local EncoderOriginal Text 
Representation

Global Encoder

Multi-view
Text Representation

MV-Encoder

Time Series 
Encoder

Figure 1: Architecture of the MV-Encoder,
which consists of Position-wise Encoder,
Local Encoder, Global Encoder and Time
Series Encoder. It can provide different
text representations for the downstream
tasks by making the most of the input in-
formation from multiple views.

Firstly, to guarantee the purity of information at each po-
sition, we employ a fully connected feed-forward network
(FFN) (Vaswani et al., 2017) as the position-wise encoder.
The FFN is applied to each position separately and iden-
tically and consists of two linear transformations with a
ReLU activation in between. It is parameterized by two
matrices W1 ∈ Rd×dff and W2 ∈ Rd×dff where d is the
input hidden state size and dff is the number of neurons
in the intermediate layer of FFN. We use X ∈ RN×d to
denote the input, where N is the sequence length. The
output P ∈ RN×d can be computed as Eq. (1):

P = FFN(X) = max (XW1 + b1, 0)W2 + b2 (1)

where b1, b2 are the bias in the two linear layers.

3.1.2 Local Encoder
Owing to the capability of capturing local correlations of input sentences, Convolutional neural networks
(CNN) (Kim, 2014; Kalchbrenner et al., 2014; Lei et al., 2015) have been successfully applied to many
sequence labeling tasks (Xu and Sarikaya, 2013; Xu et al., 2018), it extracts high-dimensional features
between locally adjacent words by using different sizes of sliding windows for the word vectors of all
words of the sentence. Xu and Sarikaya (2013) proposed using Convolutional Neural Network (CNN)
based CRF for SLU task, and proved that the CNN model has great performance in the slot filling task.
In this paper, we employ CNN in our MV-Encoder. After encoded by CNN, our model output a d
dimensional vector in each position. As shown in Figure 1, when we set the kernel size of CNN as 3, the
neural network output of each position will contain the information of contiguous three positions of the
input sentence. After applying the Local Encoder, the output is represented as L ∈ RN×d.

3.1.3 Global Encoder
Though CNN can extract local features between locally adjacent words, its filter has a limited word ca-
pacity and cannot capture long-term dependencies, so it cannot obtain the semantic relationship between
non-adjacent words in a sentence. However, due to the pre- and post-dependence of natural language
structure, it is important for the sequence labeling task to acquire the global contextual information of
the input sentence. Thus, in the global encoder, we adopt the self-attention mechanism (Vaswani et al.,
2017), which is excellent in modeling global information (Qin et al., 2019; Tan et al., 2018; Liu et al.,
2019; Zhong et al., 2018; Zhao et al., 2019) to capture the context-aware information for each position
of the input sentence. In the slot filling task, it helps to determine which position is likely to be a slot.
Following Vaswani et al. (2017), suppose the input is X ∈ RN×d where N is the length of the input
sequence and d represents the mapped dimension, we map the matrix of input vectors to queries (Q),
keys (K) and values (V) matrices with different linear transformations, where WQ, WK , WV , WO

∈ Rd×d are projection parameters. The output of the global encoder G ∈ RN×d is computed as Eq. (2).1

G = Attention(X) = Softmax

(
QK>√

dk

)
VWO>

= Softmax

(
1√
dk

XWQWK>X>
)
XWV WOT

(2)

3.1.4 Time Series Encoder
Though self-attention mechanism shows great performance in building global information, it is a bit
weak in capturing time series information, which means that it cannot get the relative position of two

1For detailed explanation of self-attention mechanism, please refer to Vaswani et al. (2017).
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tokens. The Bi-LSTM (Hochreiter and Schmidhuber, 1997) has internal mechanisms called gates that
can regulate the flow of information. These gates can learn which data in a sequence is important to keep
or throw away. By doing that, it can pass relevant information down the long chain of sequences to make
predictions and capture long term dependencies. We simplify LSTM recurrence as:

hi = f (hi−1,xi) (3)

For the input sequence X = (x1,x2, . . . ,xN ), the Bi-LSTM reads it forwardly and backwardly to
produce context-sensitive hidden states. The i-th hidden state hi can be denoted as:

hi =
−→
hi ⊕

←−
hi =

−→
f
(−−→
hi−1,xi

)
⊕
←−
f
(←−−
hi+1,xi

)
(4)

where ⊕ is an operation for concatenating two vectors,
−→
hi and

←−
hi are the i-th hidden state of the forward

and backward LSTM.
Hence, the Time Series Encoder output H ∈ RN×d can be represented as: H = (h1,h2, . . . ,hN )
After obtaining the output of Position-wise Encoder, Local Encoder, Global Encoder and Time Series

Encoder, as shown in Figure 1, we concatenate these four representations as the final MV-Encoder output:

E = P⊕ L⊕G⊕H (5)

where E ∈ RN×4d and ⊕ is concatenation operation.
Through the applying of MV-Encoder, we carry out feature fusion from multiple points of view and

generate a useful multi-view text representation. Thus the following decoder layer can utilize such new
text representation to effectively solve the downstream tasks. Another benefit of the MV-Encoder is
time-friendly because each of the containing encoders can be implemented in parallel.

3.2 Decoder Layer
After extracting feature with the MV-Encoder, we can get the output E = (e1, ..., eN ) ∈ RN×4d. We
then adopt LSTM and linear transformation as a separate intent decoder and slot decoder to perform
intent detection and slot filling prediction. For the slot decoder, we use uni-directional LSTM to decode
the sequence features. At the decoding step i, the decoder state hS

i is calculated by previous decoder
state hS

i−1, the previous slot label distribution yS
i−1 and the encoder hidden state ei, it can be denoted as:

hS
i = f

(
hS
i−1,y

S
i−1, ei

)
(6)

Then the slot label can be computed as:

oSi = argmax
(
yS
i

)
= argmax

(
Softmax

(
WShS

i + bS
))

(7)

where yS
i is the slot output distribution of the i-th token in the utterance, oSi represents the slot lable of

i-th token and WS are trainable parameters of the model.
For the intent decoder, we similarly use another LSTM in the intent detection decoder, the LSTM

decoder state at decoding step i is denoted as hS
i :

hI
i = f

(
hI
i−1,y

I
i−1, ei

)
(8)

Then, we sum the LSTM’s hidden states at each time step as hsum, and feed it into a linear output layer
which projects the component to intent label space. Similar to slot filling, we achieve the normalized
distribution over all possible intent labels after softmax:

hsum =
∑
i∈N

hIi ; oI = argmax
(
yI
)
= argmax

(
Softmax

(
WIhsum + bI

))
(9)

where yI is the intent output distribution, oI represents the intent lable of the utterance and WI are
trainable parameters of the model.



3472

Input sentence
For Task1

Input sentence
For Task2

Multi-view Encoder

Intent 
Decoder
for SNIPS

Intent 
Decoder
for ATIS

Task1: Intent 
Detection

Task2: Intent 
Detection

Input sentence
For Task1 and Task2

Multi-view Encoder

Intent 
Decoder
for SNIPS

Slot 
Decoder
for SNIPS

Task1: Intent 
Detection

Task2: Slot 
Filling

Input sentence
For Task1

Input sentence
For Task2

Multi-view Encoder

Intent 
Decoder
for SNIPS

Slot 
Decoder
for ATIS

Task1: Intent 
Detection

Task2: Slot 
Filling

(a) Horizontal Federated Learning (b) Vertical Federated Learning (c) Federated Transfer Learning

Slot Decoder
for SNIPS

Task1: Slot 
Filling

Slot Decoder
for ATIS

Task2: Slot 
Filling

Intent 
Decoder
for ATIS

Task1: Intent 
Detection

Slot Decoder
for ATIS

Task2: Slot 
Filling

Slot Decoder
for SNIPS

Task1: Slot 
Filling

Intent 
Decoder
for ATIS

Task2: Intent 
Detection

Figure 2: Three settings of federated learning. For (a), we implement the horizontal federated learning
setting on SNIPS and ATIS ID datasets (solid black), as well as SNIPS and ATIS SF datasets (dashed
black); for (b), we implement the vertical federated learning on SNIPS ID and SF datasets (solid black),
as well as ATIS ID and SF datasets (dashed black); for (c), we conduct experiment on ID task of SNIPS
dataset and SF task of ATIS datasets (solid black), as well as SF task of SNIPS dataset and ID task of
ATIS dataset (dashed black).

3.3 Implementation
In this part, we will introduce the three federated learning settings and our implementation. For each fed-
erated setting, we will first introduce its usage scenario. Then we introduce how we apply the federated
learning setting to different SLU sub-tasks on SNIPS and ATIS.

3.3.1 Baseline
Due to the lack of decoder interaction in our framework, it doesn’t make much sense to directly compare
our results with other methods. Thus, in order to better see the improvement brought by our framework,
we establish a simple but strong baseline model. Specifically, we take single individual task and dataset as
our baseline model, with the cooperation of our MV-Encoder, which means that in this paper, our baseline
model performs on SNIPS intent detection dataset, SNIPS slot filling dataset, ATIS intent detection
dataset and ATIS slot filling dataset, respectively. The decoder is the same as other models in different
federated setting, as described in Section 3.2.

3.3.2 Horizontal Federated Learning
In the case of horizontal federated learning, where the user features of the two data sets overlap more
and the user overlaps less, we divide the data set horizontally, i.e., the user dimension, and extract the
user features that are the same but the users are not the same to train the model. This method is called
horizontal federated learning. For example, there are two banks in different regions, and their user groups
are from their respective regions, and the intersection between them is small. However, their businesses
are similar, so the recorded user features are the same. At this point, we can use horizontal federated
learning to build a joint model.

In implementation, we treat two different intent detection datasets as two banks with respective dif-
ferent “users” (input sentences). And they have the same “user features” (intent detection). As shown in
Figure 2a, we implement this setting on SNIPS and ATIS intent detection datasets, as well as SNIPS and
ATIS slot filling datasets.

3.3.3 Vertical Federated Learning
In the case of vertical federated learning, where the users of the two data sets overlap more and the user
features overlap less, we divide the data set in the vertical direction, i.e., the feature dimension, and take
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Figure 3: The architecture of full model.

Dataset SNIPS ATIS

Vocab Size 11,241 722
Average Sentence Length 9.05 11.28
#Slots 72 120
#Intents 7 21
#Training Samples 13,084 4,478
#Development Samples 700 500
#Test Samples 700 893

Table 2: Statistics of SLU
datasets: SNIPS and ATIS

out the same users but different user features to train the model. This method is called vertical federated
learning. For example, there are two different institutions. One is a bank in one place and the other is
an e-commerce company in the same place. Their user group is likely to include most of the residents of
the place and therefore the intersection of users is large. However, because banks record users’ income
and expenditure behaviors and credit ratings, while e-commerce stores users’ browsing and purchasing
history, their user features overlap is small. Vertical federation learning is to aggregate these different
features in an encrypted state to enhance model capabilities. At present, many machine learning models
such as logistic regression models, tree structure models, and neural network models have gradually been
proven to be able to build on this federation system.

In our implementation, we treat two different downstream tasks as two different institutions with the
same “users” (inputs sentences). And they have different “user features” (intent detection and slot filling).
As shown in Figure 2b, we implement this setting on SNIPS intent detection and slot filling datasets, as
well as ATIS intent detection and slot filling datasets.

3.3.4 Federated Transfer Learning

In the case where the user and user features of the two datasets have less overlap, we do not segment the
data and use the transfer learning to overcome the lack of data or labels. This method is called federated
transfer learning. For example, there are two different institutions, one is a bank located in China, and
the other is an e-commerce company located in the United States. Due to geographical restrictions, the
user groups of the two institutions have very little intersection. At the same time, due to the different
types of institutions, only a small part of the data features overlap. In this case, for carrying out federated
learning, we use transfer learning to solve the problem of small unilateral data and small label samples,
thereby improving the effectiveness of the model.

In our implementation, we treat two different downstream tasks as two different institutions with the
two different “users” (inputs sentences). And they have different “user features” (intent detection and
slot filling). We implement this setting on intent detection task of SNIPS dataset and slot filling task of
ATIS datasets, as well as slot filling task of SNIPS dataset and intent detection task of ATIS dataset, as
shown in Figure 2c.

3.3.5 Full Model

After conducting experiments on three federated learning settings, we assume that if all tasks and data
could be combined, the performance will be further improved. Thus we further explore the performance
of the full model which jointly trains two tasks and two datasets together. The architecture of the full
model can be seen in Figure 3.

4 Experiments

In this section, we first describe two benchmark datasets and experimental settings for intent detection
and slot filling tasks, and their evaluation metrics. Next, we describe some previous methods and list their
performance. Finally, we present our evaluations of the proposed framework on three federated learning
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Model
SNIPS ATIS

Intent (Acc) Slot (F1) Intent (Acc) Slot (F1)

Joint Seq2Seq (Hakkani-Tür et al., 2016) 96.9 87.3 92.6 94.3
Attention BiRNN (Liu and Lane, 2016) 96.7 87.8 91.1 94.2
Slot-Gated Full Atten (Goo et al., 2018) 97.0 88.8 93.6 94.8
Slot-Gated Intent Atten (Goo et al., 2018) 96.8 88.3 94.1 95.2
Self-Attentive Model (Li et al., 2018) 97.5 90.0 96.8 95.1
Bi-Model (Wang et al., 2018) 97.2 93.5 96.4 95.5
CAPSULE-NLU (Zhang et al., 2019) 97.3 91.8 95.0 95.2
SF-ID Network (E et al., 2019) 97.0 90.5 96.6 95.6
Stack-Propagation (Qin et al., 2019) 98.0 94.2 96.9 95.9
Joint BERT (Chen et al., 2019) 98.6 97.0 97.5 96.1
Joint BERT + CRF (Chen et al., 2019) 98.4 96.7 97.9 96.0

Baseline 97.85 91.91 96.75 95.20
w/ HFL 97.86 92.45 97.09 95.32
w/ VFL 98.43 93.92 97.54 95.55
w/ FTL 97.43 92.82 96.61 95.65

Full Model 98.72 94.89 97.60 96.08
w/ BERT 99.33 97.20 98.28 96.41

Table 3: Performance on the SNIPS and ATIS dataset under different federated learning settings.

settings, i.e., horizontal federated learning, vertical federated learning and federated transfer learning, as
well as our baseline model and full model.

4.1 Datasets and Settings

To evaluate the efficiency of our proposed model, we conduct experiments on two benchmarks,
the widely-used ATIS dataset (Hemphill et al., 1990) and custom-intent-engine dataset called the
SNIPS (Coucke et al., 2018), which is collected by snips personal voice assistant. Compared with the
ATIS dataset, the SNIPS dataset is more complex due to its large vocabulary and cross-domain intents.
The detail of the datasets can be seen in Table 2. Both datasets used in our paper follows the same format
and partition as in Qin et al. (2019). Two evaluation metrics are used in the SLU task. The performance
of intent detection is measured by accuracy, while slot filling is evaluated with the F1 score.

We adopt the Adam optimizer for optimizing the parameters, with a mini-batch size of 16 and initial
learning rate of 0.001. In our experiments, we use the GloVe 300 dimensional word embeddings (Pen-
nington et al., 2014) as our input sentence embeddings. After training 300 epochs, we select the model
which works the best on the dev set, and then evaluate it on the test set.

4.2 Results

Following Qin (2019), we use two evaluation metrics in the experiments, i.e., the accuracy for the intent
detection task, and the F1 score for the slot filling task. Table 3 shows the experiment results of the
proposed framework on SNIPS and ATIS datasets.

Baselines In addition to the previous SLU works, we also propose our own baseline model for easily
seeing the promotion of our federated learning framework. As can be seen in Figure 3, even without
any decoder interaction and data integration, our baseline model achieves 98.72% and 97.60% accuracy
in intent detection task as well as 96.75% and 95.20% F1 score in slot filling task on SNIPS and ATIS
datasets, respectively, which outperforms most of the previous methods. From the experimental results,
we can observe that: 1) the MV-Encoder performs well in SLU task; 2) though only single task and
dataset are used, the result is impressive.

Horizontal Federated Learning As shown in Figure 2, we conduct experiments with HFL on SNIPS
and ATIS ID datasets, as well as SNIPS and ATIS SF datasets. Results are shown in Table 3, compared
to our baseline model, all the datasets and tasks have improvements on all federated settings, proving the
effectiveness of the federated learning framework.
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Model
SNIPS ATIS

Intent Slot Intent Slot

Baseline (T) 97.23 91.12 96.06 94.30
w/ G 97.44 91.36 96.37 94.51
w/ G + P 97.61 91.43 96.68 94.72
w/ G + P + L 97.85 91.91 96.75 95.20
w/ G + P + L + VFL 98.43 93.92 97.54 95.55

Baseline (full) 98.72 94.89 97.60 96.08
w/o T 98.55 94.67 97.38 95.47
w/o G 98.52 94.75 97.37 95.51
w/o P 98.66 94.72 97.46 95.48
w/o L 98.63 94.68 97.47 95.45

Table 4: Ablation analysis of MV-Encoder on
the baselines, i.e., the full model and Time Se-
ries Encoder. T, G, P, L, VFL stand for Time
Series Encoder, Global Encoder, Position-wise
Encoder, Local Encoder and vertical federated
learning, respectively. Each part of the MV-
Encoder is essential for the SLU task.

Figure 4: Sentence F1 scores (%) comparison on
the ATIS. The x axis presents the F1 scores of the
full model and y axis shows the F1 scores of the full
model with BERT representation.

Vertical Federated Learning We conduct experiments on two different downstream tasks with the
same input sentences in VFL. Table 3 shows that under this setting, we achieve the best performance on
most of the metrics (except for ATIS slot) among all the three federated learning settings.

Federated Transfer Learning As for the FTL, we validate the model on SNIPS ID dataset and ATIS
SF dataset, as well as SNIPS SF dataset and ATIS ID dataset. The results of FTL can be seen in Tabel 3,
all the results on single datasets except ATIS slot are significantly lower than the models under other
federated learning settings. We attribute this to the fact that simply training different task from different
dataset may have the opposite effect on the model, because it is more difficult for a model to learn
knowledge with totally different task and dataset than the model that has the same dataset or the same
task such as the above two federated learning settings.

Full Model Base on the above results, we find that the model has obvious improvement on SLU task
after applying multiple datasets or multiple tasks, thus, we also conduct an experiment on the full model,
aiming to fully integrate all datasets and tasks. From Table 3, We can see that after employ all the datasets
and tasks, the model performs best on all the metrics, which further verifies our conclusion.

Full Model w/ BERT Finally, BERT is employed to further boost the performance of the full model
by providing abundant input features. Empirically we concatenate the encoding features of BERT with
the output of our proposed MV-Encoder and set the decoder same as the full model. As can be seen in
Table 3, experimental result shows that, with BERT representation, we get 99.33% and 98.28% in terms
of accuracy on ID task as well as 97.20% and 96.41% in terms of F1 score on SF task, respectively.

5 Analysis

Significant improvements among two metrics have been witnessed on both two publicly datasets in Sec-
tion 4. However, we would like to know the reason for the improvement. In this section, we first study
the effect of our proposed MV-Encoder. Next, we explore the effect of the federated learning framework.
Finally, we study the effect of BERT representation in our framework.

5.1 Effect of the Multi-view Encoder
Compared with the single task model, our model has obvious improvement in both ID and SF tasks. We
attribute this to the fact that, through the sharing of the MV-Encoder, information from different tasks
or datasets can be utilized to learn from each other, thus we could fully utilize the potential linguistic
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knowledge of the sentence to generate multi-granularity text representations. To verify the effectiveness
of the MV-Encoder, we conduct experiments with the two following ablations.

From Table 4, we start with a simple baseline model (i.e., Time Series Encoder), add a sub-encoder
each time, and observe that the model performance can be further improved consistently. Since there are
so many combinations of this type of addition, we also want to analyze the MV-Encoder from a holistic
perspective. From Table 4, we show the results by removing each part of the MV-Encoder, we can clearly
see that each part of the MV-Encoder is essential and their combination can provide a strong and robust
encoder for our federated learning framework in SLU task. In all, the idea of combining multiple encoder
is simple but effective for the SLU task. With the MV-Encoder, our model can generate multi-granularity
text representation which is shown to be very helpful to the intent detection and slot filling tasks.

5.2 Effect of Federated Learning Framework

From the last line of Table 4, after employing the overall MV-Encoder with the VFL, results of ID and
SF tasks have obvious improvement, which shows that federated learning framework could unify various
types of knowledge from different tasks. In addition, compared with the previous model, our model can
take data privacy into consideration. It means that our model can avoid data leakage, which is very useful
and essential in some specific scenarios. Besides, as shown in Table 3, both of the HFL and VFL can
boost the performance of SLU task over the strong baseline model with MV-Encoder, while the FTL
setting performs slightly worse than the baseline model on the ID task. We think that it is hard for the
model to learn knowledge with totally different task and dataset than the model that can learn from the
same dataset on different tasks or the same task on different datasets. Thus, we further propose the full
model under our federated learning framework which outperforms most of the existing methods.

5.3 Effect of BERT

As shown by the last two lines in Table 3, compared with the full model without BERT, the improvements
brought by our framework over the BERT-enhanced baseline are fairly large on SNIPS SF task, whose
absolute F1 score increased by 2.31%. After employing BERT representation, we establish new state-
of-the-art results on SNIPS and ATIS datasets. To analyze the difference between the two models (full
model and full model w/ BERT), inspired by Zhang et al. (2016b), we conduct an analysis on the sentence
performance comparison between them. As shown in Figure 4, we can see that most of the scatter points
are distributed near the diagonal line, demonstrating that the full model is similar to the full model with
BERT. Though, there are also many points away from the diagonal line, and obviously for these points,
the full model with BERT representation performs better, which shows that as for the slot filling task,
our MV-Encoder performs better after concatenating with BERT representation. Thus, adding additional
BRET representation can further improve the effectiveness of our proposed framework.

6 Conclusion

In this paper, we propose a federated learning framework to perform SLU, where the centralized model is
realized by the proposed MV-Encoder to capture the multi-granularity information of the input sentences.
Our framework can unify various types of knowledge, i.e., text representations, from different datasets
and tasks, without the sharing of downstream task data. Furthermore, we implement our framework on
three federated learning settings and conduct extensive experiments on two benchmarks datasets, i.e.,
SNIPS and ATIS. The experimental results and analysis demonstrate the effectiveness of our framework
and the MV-Encoder. Specifically, our approach brings noticeable improvements compared to the base-
line. In particular, by leveraging BERT as an additional encoder, we achieve the best performances on
SNIPS and ATIS datasets, where we get 99.33% and 98.28% in terms of accuracy on the intent detection
task as well as 97.20% and 96.41% in terms of F1 score on the slot filling task, respectively.
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