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Abstract

In this paper, we present a multi-level alignment pretraining method in a unified architecture for
multi-lingual semantic parsing. In this architecture, we use an adversarial training method to
align the space of different languages and use sentence level and word level parallel corpus as
supervision information to align the semantic of different languages. Finally, we jointly train the
multi-level alignment and semantic parsing tasks. We conduct experiments on a publicly avail-
able multi-lingual semantic parsing dataset ATIS and a newly constructed dataset. Experimental
results show that our model outperforms state-of-the-art methods on both datasets.

1 Introduction
1 The goal of semantic parsing is to convert a natural language sentence to an executable logical form,
which has been studied in the past few years and used on various applications, such as question an-
swering (Kwiatkowski et al., 2011), task-oriented dialog systems (Yih et al., 2015) and interpreting
instructions (Artzi and Zettlemoyer, 2013).

Due to the importance of semantic parsing, various approaches have been proposed for this task, such
as (Kwiatkowski et al., 2011; Jia and Liang, 2016; Dong and Lapata, 2018; Chen et al., 2018). However,
most existing methods only handle monolingual semantic parsing, while in real world applications such
as Chatbot and search engine, we generally need to handle multi-lingual semantic parsing. Table 1 shows
an example of the multi-lingual semantic parsing task, and the task aims to convert the question from
different languages into the corresponding lambda calculus. For multi-lingual semantic parsing, previous
works such as Jie and Lu (2014) and Susanto and Lu (2017) study it from different perspectives. Jie and
Lu (2014) train the model for each language respectively and use ensemble method to combine the mod-
els on a multi-lingual semantic parsing dataset. Susanto and Lu (2017) propose a hybrid combination
method to model multi-source input. Both of them need enough multi-lingual semantic parsing data for
training. However, it is very hard to collect enough multi-lingual semantic parsing data.

EN Who is the director of Inception?
ZH 谁是电影Inception的导演
LF λx.film film director(Inception, x)

Table 1: An example of our multi-lingual semantic parsing dataset, including a lambda calculus (LF)
with the English (EN) and Chinese (ZH) question.

Recently, various pretraining methods have been successfully used to solve the labeled data insufficient
problem in different tasks. In these methods, unsupervised data (Peters et al., 2017; Alec Radford, 2018;
Devlin et al., 2018) or richly supervised data (McCann et al., 2017; Lample and Conneau, 2019) from
other tasks are used to pretrain their models and achieve significant performance improvement in different
tasks.

1This work is licensed under a Creative Commons Attribution 4.0 International License. License details: http:
//creativecommons.org/licenses/by/4.0/.

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
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In this paper, we propose a multi-level alignment pretraining method to align the space level, word
level and sentence level semantic representations for different languages. We design an adversarial train-
ing method to align the space level representation using unsupervised data. And to align the semantic
level representation of parallel corpus in different languages, we use machine translation corpus and
bilingual tokens to learn a shared cross-lingual encoder for our semantic parsing model. To better evalu-
ate our method, we construct an open domain multi-lingual semantic parsing dataset, since most existing
multi-lingual semantic parsing datasets (Hemphill et al., 1990; Zettlemoyer and Collins, 2012) are for
specific domain and relatively small in scale.

The main contributions of this paper are:

• We design a multi-level alignment pretraining method to pretrain the multi-lingual semantic parsing
model.

• We construct a new multi-lingual semantic parsing dataset on open domain, we will release this
dataset to help the research of multi-lingual semantic parsing tasks.

• We conduct an experiment on ATIS and our dataset. Experimental results show that our model
achieves new state-of-the-art results on both datasets.

2 Model

In this section, we will first briefly introduce the basic sequence-to-sequence (S2S) model as our baseline
model. Then, we introduce the architecture of our Multi-level Alignment pretraining for multi-lingual
Semantic Parsing (MASP) model.

2.1 S2S Model for Semantic Parsing
The S2S model has been successfully used in recent semantic parsing task (Dong and Lapata, 2016).
The input of the model is a natural language question q = [x1, x2...x|q|] and output is a logical form
sequence l = [y1, y2, ...y|l|]. The tokens of the question q are fed one-by-one into the encoder, producing
a sequence of encoder hidden states h = [h1, h2, ...h|q|]. In the decoding process, at each time step t, the
decoder computes the attention distribution to obtain a context vector ct as follows:

eti = uT f(We[hi; s
t] + be);

ati =
eti∑|q|
j=1 e

t
j

; ct =

|q|∑
i=1

atihi
(1)

where f is a non-linear function, and we use tanh here. u, We and be are parameters. st is the decoder
hidden state at step t.

The context vector ct is used to compute the generation distribution Pv of the target vocabulary with
the hidden state st:

Pv = softmax(Wp(W [st; ct] + b) + bp) (2)

where Wp,W, b, bp are parameters.
In particular, to tackle out-of-vocabulary words, we incorporate the same copy mechanism as in (See

et al., 2017) in our decoder. Attention score ai is used as probability distribution of the copy mechanism
over the source words. The copy distribution Pc is defined as follows:

Pc(yt) =
∑

i:xi=yt

ati (3)

To combine the copy distribution with the generation distribution, we use a gate gc to choose whether
to copy from q or generate from the target vocabulary:

gc = σ(W ∗[ct; st; zt−1] + b∗) (4)
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where vectors W ∗, b∗ are parameters. zt−1 is the word embedding of the previous word. We get final
distribution score on each step t:

Pf (yt) = (1− gc)Pv(yt) + gcPc(yt) (5)

where Pf (yt) is considered as the final vocabulary distribution for step t.
We compute the overall loss of all steps as:

Ls2s =
∑|l|

i=0−logPf (yi)

|l|
(6)

2.2 MASP
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Figure 1: Overview of Multi-level Alignment semantic parsing Model.

In this section, we will introduce our Multi-level Alignment pretraining for multi-lingual Semantic
Parsing (MASP) model. Our model uses pretraining method to incorporate rich unsupervised and su-
pervised corpus to align sentences in different languages into shared multi-lingual space. And then we
apply our model to multi-lingual semantic parsing task.

2.2.1 Multi-level Alignment
In this section, we will introduce our alignment strategies. Our model integrates three alignment strate-
gies in space, word and sentence level, to learn shared semantic information during training. The
space level alignment only uses monolingual corpus, word-level alignment needs bilingual dictionary,
and sentence level alignment learns shared semantic information from parallel corpus. The input of
the multi-lingual model is pair-wised, including two sentences, QE = {x1, x2, ..., xn} in English,
QC = {c1, c2, ..., cm} in Chinese, where n and m is the length of QE and QC .

Space-level Alignment In this section, we design an adversarial learning method to maximize the
confusion between two language representations, which has been successfully used in domain adapta-
tion (Tzeng et al., 2017). The distributions of their representations are quite different, which will harm the
performance of shared semantic parsing model. To align the distribution space of the two languages, we
use the adversarial learning method to maximize the confusion between the two languages, which aligns
the distribution of the sentence representations. And questions from two languages can be considered as
two special domains.

The discriminator D is aimed to distinguish whether the input representation is from English or Chi-
nese. In our model, the discriminator D is a binary classifier with a standard softmax layer. The input
of D is all hidden states, i.e he of QE , from the shared RNN encoder. Furthermore, we give an extra
label yl ∈ {0, 1} for discriminator D to indicate which language the input of discriminator belongs to.
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The discriminator D sums up all hidden states as input features, and predicts which language the en-
coded sentence belongs to. For the English question QE , the final distribution in discriminator can be
formulated as,

Pad = softmax(Ma(

n∑
i=1

hei ) + ba) (7)

where Ma, ba are trainable parameters, Pad is the probability distribution of labels that indicate the
language type. The final distribution QC is the same as QE . Then we compute the cross entropy loss
Lad of the discriminator D:

Lad = −yllog(Pad(yl)) (8)

For our multi-lingual model, we maximize the reversal classification loss to optimize the parameters,
which aims to confuse the discriminator, and the reversal loss Lg is formulated as follows,

Lg = −yllog(Pad(1− yl)) (9)

This strategy can align the sentence representation space of different languages to help our model learn
shared semantic information.

Word-Level Alignment Space-level alignment strategy can align the distribution space of the two
languages. However, the shared semantic information is not aligned. In this section, we will introduce our
word level alignment strategy to map monolingual word embedding into shared cross-lingual semantic
space with the dictionary of bilingual lexicons. The model is first initialized with a pretrained word
embedding matrix, trained by word2vec based methods (Mikolov et al., 2013; Bojanowski et al., 2017)
in the two different languages. Here we define the two word embedding matrices, XE = R|XE |∗d in
English and XC = R|XC |∗d in Chinese, d is the dimension of word embedding. The word embedding
matrix in each language is pretrained respectively, embeddings of words that have the same meanings
are unaligned, which will increase difficulty to encode sentences in our model. Thus, in order to map
XE and XC into a shared semantic space, we define two linear transformation matrices WE and WC

using as the multi-lingual projection. The matrices apply a linear transformation on XE and XC to align
their embedding in each dimension. Then, we optimize our model by monolingual corpus with an extra
bilingual lexicon dictionary B.

Formally, we compute the multi-lingual representations and add the word alignment loss as,

Lw =

n∑
i=0

m∑
j=0

1− cos(WEXE(xi),W
CXC(cj)) [(xi, cj) ∈ B] (10)

where cos(., .) is the function that computes the cosine distance of two vectors. Through Eq.10, we align
the word embedding in the pretraining process to help the performance of the encoder, which share the
parameters between the two languages.

Sentence-Level Alignment Word level alignment is used to align monolingual embedding, but it can
not cover more complex semantic information between different languages, since semantic equivalent
sentences in the two languages are different in structures. To align the two representations for semantic
parsing, end-to-end training a semantic parser requires a large amount of multi-lingual semantic parsing
data, which is costly to annotate. However, there are sufficient machine translation data that contains the
semantic alignment information across different languages. Thus, we pretrain our model on these data
to align the representation of semantic equivelant sentences .

In our model, for each sentence pairQE andQC from the two languages, the shared BiLSTM encoder
compute its contextual representations [he1, h

e
2, ..., h

e
n] of QE and [hc1, h

c
2, ..., h

c
m] of QC respectively. We

use the final hidden hen and hcm state as the sentence representation. Sentence pairs in the equivalent
semantics should have similiar sentence representations that will be used in the decoder to generate the
same logical form. We also construct some negative sentence pair with different meaning by randomly
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sampling sentences in both languages. It can be considered as an auxiliary task that predict whether the
sentences’ pair from different languages has the same meaning. We also randomly pair questions in the
two language as the negative samples, and we use extra label ys ∈ {0, 1} to indicate whether the sentence
pair is semantic equivalent.

Then we can compute the sentence alignment loss as,

Ls = ys(1− cos(hen, hcm)) + (1− ys)(1 + cos(hen, h
c
m)) (11)

where Ls is the loss of sentence-level alignment.

2.2.2 Training Process
The full training process contains two steps, firstly, pretraining our model with the three alignment strate-
gies, then jointly training the model on multi-lingual semantic parsing datasets with pretraining corpus.

Pretraining We pretrain our multi-lingual model with machine translation parallel corpus(for the ex-
periment without sentence alignment, we use monolingual corpus instead) and bilingual dictionary. The
pretraining model contains the multi-lingual encoder and the discriminator D. We feed each pair of
sentences in the two languages in our model with the bilingual lexicon vocabulary B. The overall loss
of multi-lingual model contains word-level alignment loss, sentence-level alignment loss sentence and
language confusion loss,

Lpre = Lw + Ls + Lg (12)

Simultaneously, we alternately optimize the discriminator D with the loss Lad until both losses con-
verges. Then the pretrained model will be saved for multi-lingual semantic parsing tasks.

Joint Training We initialize the parameters with the pretrained multi-lingual model, and then fine-
tune on the corresponding semantic parsing dataset. The input sample in a multi-lingual semantic pars-
ing dataset, contains questions in different languages and corresponding logical forms. And we train
our model with these samples by Eq. 6. In order to keep the alignment property, we use a joint train-
ing method with the pretraining corpus and optimize the model with the loss Lft, which contains the
generation loss Ls2s and alignment loss Lpre:

Lft = Ls2s + αLpre (13)

where α is used to control the weight of the alignment loss.

ATIS MLSP
Method EN ZH EN ZH
Translate Test 20.31 33.04 21.98 19.47
SL-SINGLE (Susanto and Lu, 2017) 81.85 73.66 - -
SL-SHARED (Susanto and Lu, 2017) 81.77 73.96 - -
SL-SEPARATE (Susanto and Lu, 2017) 81.40 75.89 - -
SS-SINGLE 82.37 74.55 68.32 62.74
SS-SHARED 82.14 75.45 70.44 67.88
MASP 85.04 79.02 76.39 73.83

w/o SPACE 83.48 78.13 75.45 72.70
w/o WORD 83.26 78.57 73.32 72.45
w/o SENT 84.15 77.68 74.08 70.57

Table 2: Accuracy on ATIS and MLSP datasets. “EN” represents the accuracy of English, and “ZH”
represents the result of Chinese. In our methods, “w/o” means to ablate each alignment strategy respec-
tively.

3 Dataset

3.1 Dataset Construction
In this section, we introduce a new multi-lingual semantic parsing (MLSP) dataset based on Satori 2 It
contains a set of nodes and edges that are represented by triple {s, p, o}. Each triple denotes two nodes,

2https://microsoft.sharepoint.com/teams/SatoriHelpAndSupport/SitePages/Home.aspx
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a subject entity s, an object entity o and the directed edge p between them as a predicate. We collect our
dataset by crowd sourcing, which involves two steps:

1) First, we collect the connected triples in Freebase randomly. Second, we annotate a simple question
for each triple as seed questions. Third, we automatically generate complex questions for the connected
triples with the simple questions of selected triples using a template, following the procedure from Com-
plexWebQuestion (CWQ) (Talmor and Berant, 2018). Fourth, we ask native speakers to paraphrase the
questions generated from the template. Fifth, three other annotators verify the quality of the paraphrased
results, and annotate three additional labels to indicate whether the paraphrased questions are the seman-
tic equivalents of the automatically generated questions. We obtained a two-vote consensus of 97% and
dropped the 3% additional samples.

2) To generate Chinese questions for our dataset, we first use Microsoft’s translator3 to translate En-
glish questions into Chinese. Then we ask annotators to translate the English questions into Chinese
given the machine translated questions as a reference. For the questions which are difficult to translate,
we label them as “None” and drop them from our experiment. After this step, about 92% of the questions
are retained.

3.2 Dataset Analysis

In total, MLSP contains 15,991 samples. Each sample in our dataset has an English question, a Chi-
nese question and a corresponding lambda calculus, which contains primary functions such as Argmax,
Argmin,Argmore, Argless, Max, Min defined to denote basic functions. We also calculate the number of
question patterns and logical from patterns, whose entity name are replaced with a placeholder, and our
dataset contains 7,482 qustion patterns and 3,429 logical form patterns. Compared with existing datasets
GEO and ATIS, which contain 880 and 5,410 samples respectively, MLSP is a large scale dataset in open
domain. We will release this dataset to advance research in multi-lingual semantic parsing.

To evaluate the quality of the dateset, we randomly select 1% annotated samples to double check,
and we find that 95% of these samples are correct. We will publish this dataset with more detailed
instructions.

4 Experiment

We conduct our experiments on two datasets, ATIS and MLSP.

4.1 Datasets

ATIS contains 5410 queries from a flight booking system (Hemphill et al., 1990). The data samples
have been split into 4348 training instances, 491 validation instances, and 448 test instances. Each pair
contains a question and the lambda-calculus expression with the identified values for the variables of
date, time, city, aircraft code, airport, airline, and number. The corpus was translated into Chinese with
segmentation from (Susanto and Lu, 2017).

For our MLSP dataset introduced in Section 3, we randomly split the data into 0.8/0.1/0.1 as
train/dev/test sets in our model.

In pretraining, we use the English-Chinese translation corpus, News Commentary v12 of WMT
2017 (Bojar et al., 2017). The English corpus is tokenized by NLTK (Bird and Loper, 2004) and the
Chinese corpus is tokenized by Jieba segmenter4. In space-level and word-level alignment, we use the
unsupervised corpus of Wikipedia5. We also randomly sample the same number of sentence pairs as
the MT dataset used as the negative samples in sentence level alignment experiment. In experiment of
word level alignment, we also construct a simple bilingual lexicon dictionary by translating the words
contained in the English version into Chinese. We randomly collect 1k word pairs as bilingual lexicons.
If the word pair appears in the sentence pair, we will mark their positions with labels for word-level
alignment experiment. For ATIS, the pre-processing is the same as (Dong and Lapata, 2016), which

3https://www.bing.com/translator
4https://github.com/fxsjy/jieba
5https://dumps.wikimedia.org/
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replace entities with their type name. To evaluate our method in situations when there is not an annotated
multi-lingual semantic parsing dataset, we translate the English semantic parsing corpus by the open
translation service of Microsoft. This is expected to be a common scenario in practice.

4.2 Settings
We set the vocabulary size to 50k for both languages in our model. We use Glove (Pennington et al.,
2014) 6B and Fasttext pretrained Chinese (Bojanowski et al., 2017) as English and Chinese pretrained
word embedding. For words in vocabulary which do not have pretrained embeddings, we assign them
uniform randomized values. The size of the word embedding is set to 300. During training, we update
all word embeddings. We use accuracy on the development set to implement early stopping. Parameters
are randomly initialized from a uniform distribution (-0.01, 0.01). For regularization, we use dropout
and set the dropout rate to 0.5. Dimensions of hidden vectors in encoder and decoder are 300. α in joint
training is set to be 0.1. Adagrad (Duchi et al., 2011) is used in training with an initial accumulator value
of 0.1.

4.3 Results
Table 2 shows the results of our model and the state-fo-the-art methods on multi-lingual ATIS, and MLSP
datasets, we report accuracy of exact match to evaluate our model. “SL-SINGLE” represents applying
SEQ2TREE (Dong and Lapata, 2016) to each language respectively, “SL-SHARED/SEPARATE” de-
notes training the model with shared/separate encoder in (Susanto and Lu, 2017). “SS-SINGLE” repre-
sents training seq2seq model (described in 2.1) for each language respectively. “SS-SHARED” denotes
using both English and Chinese data to train the model. “MASP” is the proposed model in this pa-
per. Specially, we report the baseline “Translated Test” which represents we translate questions of one
language in the test dataset and evaluate on baseline model trained with data in the other language.

From the results, we observe that our model achieves a new state-of-the-art results on all dataset.
Comparing “SS-SHARED” with “SS-SINGLE”, we see that merging the data in different languages
does not achieve promising improvement, this is because the Chinese and English are different in word
and sentence level. Compared with “SS-SHARED”, the proposed model “MASP” achieves significant
improvement in both languages which illustrates the effectiveness of multi-level alignment method.

We conduct an ablation study on the variants of “MASP” and investigate the effect of our alignment
strategy. The last four lines in Table 2 show the results by ablating each aligment strategy respectively.
“w/o SENT” represents the model without sentence level alignment, “w/o SPACE” and “w/o WORD”
denotes without space level alignment and word level alignment respectively. From the results, we
observe that “MASP” outperforms “w/o SPACE”, “w/o WORD” and “w/o SENT” on all the results,
which illustrates that removing each alignment harms the performance of our model.
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Figure 2: Performance of discriminator in pretraining.

4.4 Alignment Analysis
We analyze the space level, word level and sentence level alignments in this section.

4.4.1 Space-level Alignment
We evaluate the performance of discriminator in the space-level alignment. We use questions in machine
translation dataset with their language label as input, and feed the encoded representation into the dis-
criminator. Figure 2 shows the discriminator results during pretraining. “MASP w/o CL” represents the
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model without confusion loss in space alignment. The results show that the discriminator achieves high
accuracy of discriminating the representations in “MASP w/o CL”, while it is hard to discriminate the
representations in “MASP” after 5 epochs. The results illustrate our space alignment method success-
fully align representation distribution of different languages and confuses the discriminator, which helps
our model to handle multi-lingual questions.

4.4.2 Word-level Alignment

(a) (b)

Figure 3: Word Alignment result. (a) represents the result without word alignment, and (b) is the align-
ment result

To evaluate word alignment result, we compute the cosine distance between the tokens of the questions
in the two languages. Figure 3(a) shows the results without word level alignment and Figure 3(b) shows
the results using word level alignment. From the results, we observe that most words from different
languages with the same meaning have been aligned by our word alignment method. For example,
“fight” and “航班” are semantic equivalent in English and Chinese, and their embedding are closed in
cosine similarity but it is not show the same trend in the model without our alignment strategy. It shows
that our word alignment layer can successfully transform the word embedding into a shared multi-lingual
space, thus help to improve the model performance.

4.4.3 Sentence-Level Alignment
We also evaluate our sentence alignment results by a classification task as auxiliary. We use the pre-
trained model to encode the sentence pair in different languages, and use the cosine distance of sentence
representations to predict whether the two sentences have the same meaning. We assume that if the
cosine distance is greater than 0, the two sentences are semantic equivalent. We evaluate our model on
multi-lingual ATIS datasets. We use their question pair data as positive samples and randomly select the
same number of Chinese questions and English questions, pair as negative samples to compute the clas-
sification accuracy. Then we find that the accuracy is up to 97% in both datasets by our sentence-level
alignment method. However, without sentence-level alignment the accuracy is 61.3%. This experiment
shows our sentence-level alignment method successfully aligns sentence representations in semantic.

4.5 Results on Translated Corpus

ATIS MLSP
Method EN ZHMT EN ZHMT
SS-SINGLE 82.37 25.00 68.32 23.67
SS-SHARED 79.24 36.61 69.63 25.74
MASP 83.48 43.08 73.64 34.56

w/o SPACE 81.03 42.19 72.89 33.63
w/o WORD 81.92 41.74 71.51 31.50
w/o SENT 82.14 39.73 72.07 28.62

Table 3: Accuracy on ATIS and MLSP with machine translated Chinese Questions

Usually in real world scenarios, we only have monolingual semantic parsing dataset instead of multi-
lingual dataset. In this section, we use Microsoft Translator to generate Chinese semantic parsing corpus
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from the English corpus and use these data to evaluate our model. Table 3 shows the results of our
model and baseline methods. From the results in Table 3 and Table 2, we find that the performance using
translated corpus on both English and Chinese are lower than using annotated data. However, with these
translated corpus, our methods can improve the target language performance, which shows its robustness.
The results demonstrate that both the multi-lingual data on ATIS and MLSP effectively improve the
semantic parsing performance. And also we see that our model achieves state-of-the-art results on all the
results, which shows the effectiveness and robustness of our method. This experiment illustrates that our
methods can be used in real world scenarios with the help of existing machine translator.

5 Related Work

Semantic parsing, as an important task in natural language understanding, has attracted significant atten-
tion in the research and industry. Recently, various semantic parsing models have been proposed such
as (Kwiatkowski et al., 2011; Xiao et al., 2017; Yin and Neubig, 2017; Fan et al., 2017; Dong and Lapata,
2016; Chen et al., 2018; Dong and Lapata, 2018). Kwiatkowski et al. (2011) propose a combinatory cat-
egorical grammar induction technique for semantic parsing. Xiao et al. (2017; Yin and Neubig (2017)
use grammar and syntax information to improve semantic parsing models. (Fan et al., 2017) apply a
transfer learning method to semantic parsing. Dong and Lapata (2016) propose a tree-based decoder
to model structure of logical forms. Chen et al. (2018) translate the decode process as a sequence of ac-
tions with a sequence-to-sequence model. Recently, Dong and Lapata (2018) propose a two-stage model
to decode the logical form with the help of sketches, which contain structure and predicates in logical
forms.

In multi-lingual semantic parsing, Jie and Lu (2014) use majority voting ensemble method to com-
bine outputs from parsers for certain languages to apply on multi-lingual semantic parsing. Zhang et al.
(2018) use a sequence-to-sequence model to map the questions in the source language into decomposi-
tional semantic representations in the target language. In Susanto and Lu (2017)’s work, they propose
a combination method to combine questions in different language simultaneously for multi-source input
and achieve promising improvement on ATIS (Hemphill et al., 1990). They also explore different ar-
chitectures for single-source input without their combination mechanism. Zou and Lu (2018) propose a
method to learn a cross lingual representation and use it in their semantic parsing model (Zettlemoyer
and Collins, 2012).

6 Conclusion

In this paper, we propose a multi-lingual semantic parsing model, which is first pretrained using a multi-
level alignment mechanism, and then we jointly train the multi-lingual semantic parsing and multi-level
alignment tasks. Most existing multi-lingual semantic parsing datasets are based on specific domain, to
better evaluate our method on open domain, we annotate a relative large scale multi-lingual semantic
parsing dataset on open domain. Experimental results on ATIS and our dataset show the effectiveness
and robustness of our model.
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