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Abstract
We propose a new self-explainable model for Natural Language Processing (NLP) text classifi-
cation tasks. Our approach constructs explanations concurrently with the formulation of classifi-
cation predictions. To do so, we extract a rationale from the text, then use it to predict a concept
of interest as the final prediction. We provide three types of explanations: 1) rationale extraction,
2) a measure of feature importance, and 3) clustering of concepts. In addition, we show how
our model can be compressed without applying complicated compression techniques. We exper-
imentally demonstrate our explainability approach on a number of well-known text classification
datasets.

1 Introduction

Deep neural network (DNN) models provide powerful and sophisticated approaches for addressing Nat-
ural Language Processing (NLP) text classification tasks. Yet their underlying behaviour is often opaque,
especially in sensitive domains which can critically influence a user’s decision, such as in legal and med-
ical domains. As a result, we need to create DNNs that are explainable, in other words, that can provide
explanations for their predictions. Our work here focuses on understanding predictions made by a DNN
model, to provide explanations at inference time. There has, alternatively, been attention on models at-
tempt to make a neural network explainable, for instance (Sundararajan et al., 2017) and (Ribeiro et al.,
2016), which create post-hoc explanations to support explainability. There are also other methods which
focused on learning explanations concurrently with the prediction. For example, (Lei et al., 2016) and
(Bastings et al., 2019) proposed a neural network architecture for text classification which “justifies” its
predictions by selecting relevant tokens in the input text. But this interpretable representation is then ad-
justed by a complex neural network, so the method is transparent as to what aspect of the input it uses for
prediction, but not how it captures the salient features. Our work also focuses on extracting a rationale
(which can also be defined as an excerpt or justification) simultaneously while computing a prediction.

Figure 1: Our alternative explanations for NLP text classification.

In addition, we insist that explanations are
provided interactively, so that a user can
switch from one explanation to another to
gain a better understanding about the class
prediction (sometimes referred to as al-
ternative explanations) as in the work of
(Atakishiyev et al., 2020)). Overall, we in-
vestigate how to improve the level of ab-
straction for DNNs and go beyond mea-
suring feature importance. To address this
problem, we present a new alternative ex-
planation mechanism, i.e., clustering simi-
lar rationales into distinct clusters concur-
rently with rationale extraction. Our explanation mechanism for DNNs can be summarized as follows:
This work is licensed under a Creative Commons Attribution 4.0 International Licence. Licence details: http://
creativecommons.org/licenses/by/4.0/.
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1) do unsupervised rationale extraction concurrently with classification, 2) dynamically measure feature
importance, and 3) learn meaningful concept vectors, i.e., learn meaningful clusters concurrently with
rationale extraction.

A concept is represented as a vector in the space which groups all the set of examples (rationales) that
share the meaning of the concept. For example, consider sentiment classification that has the following
rationales in movie reviews, such as “very nice movie,” “enjoyed the movie,” “but the acting was very
nice,” et cetera; all of these text rationales share the same general semantics of “positiveness,” and will be
represented as a single concept (positive sentiment). Our model learns to group semantically consistent
rationales across multiple texts into a single concept cluster. In addition, it is known that a non-linear deep
network relies on millions or even billions of parameters, which makes it hard to be deployed in many
real-world problems (e.g., on small devices such as cell phones, FPGAs, etc.) due to lack of computation
power and the availability of GPUs. We show how our model can be compressed to work in real time
applications without sacrificing significant accuracy, and without re-training, parameter pruning, or using
quantization techniques. This solution is unique to our model, and to the best of our knowledge, is the
first method which combines these techniques in a single model. Figure 1 shows the explainability
structure of our model. To explain a prediction, our model can expose the extracted rationale, measure
relevant feature importance, and visualize the clustered concept. We can also identify the top salient
words based on feature importance.

Our contributions can be summarized as follows: 1) we propose a self-explainable neural network
model that concurrently extracts a rationale and predicts the classification output; 2) we extract rationales
from input texts, and cluster them into concepts; 3) we improve the explainability of the black-box model
by producing the extracted rationales and producing visualized clusters of the constructed concepts; and
4) our model can be compressed without losing much accuracy, and can be deployed as an on-line service
in real-time applications in resource-restricted devices.

2 RANCC: Rationalizing Neural Networks via Concept Clustering

We call our model RANCC - Rationalizing Neural Networks via Concept Clustering. This section
explains the ideas and methods in RANCC: (a) how to build a self-explainable neural network model
for text classification (e.g., a model that provides a rationale concurrently with the prediction), (b) how
to simultaneously learn concepts of interest from the training data and cluster them, and (c) how to
compress RNCC model. The overall model is shown in Figure 2.

Figure 2: Block diagram of our method. A text instance is fed into the embedding layer. The rationale is extracted from the
text instance, and pass it to the concept clustering/classification layer to cluster the concept and predict the target class. The
loss is computed, and used to update the entire network in an end-to-end approach. Note that the black arrows indicate the

steps of our approach and the red arrows indicate the process inside any recurrent network.

2.1 Steps for rationalizing predictions in RANCC
In a text classification task, an input ordered sequence x = 〈x1, ..., xl〉 is mapped to a distribution over
class labels using a parameterized θ neural network architecture (such as a Long Short Term Memory net-
work or LSTM), i.e., F(x; θ). Normally, the input to F is in the form of sentences, or short paragraphs.
The output y is a vector of class probabilities. The target class yi ∈ y is a categorical outcome, such as a
sentiment class like “positive review.” The distribution over the labels is defined as y|x ∼ Cat(F(x; θ)).
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2.1.1 Unsupervised rationale extraction
A rationale is defined as a subset of text extracted from the source document of the task, which provides
sufficient evidence for predicting the correct output. Our technique assumes that an explanation of a
black-box’s prediction is understandable and meaningful if it relies on a small number of words (a ratio-
nale), where each rationale relates to parts of text that are semantically consistent across multiple texts.
Given an input sequence x : w1, ..., wl where wi, a word in the sentence, is represented as a fixed size
vector where wi ∈ Rd, and d is the dimension of embedding vectors. For each sequence, we first extract
a rationale to be used by the downstream classifier. This rationale is also used as our first explanation to
the model’s final prediction. We feed x to a function φ(x) (this function is a convolution operation over
the embedding matrix). The function learns v feature maps Z = {Zi}vi=1, whose shape is l × d × v.
For instance, in the case of a movie review input of length 50 words and feature dimension of size 100,
the function produces 50 × 100 × v feature maps. We then aggregated all the feature maps to obtain a
single matrix Z̄ ∈ Rl×d. This matrix has the following properties: 1) each row represents a word from
the input sentence, 2) if the feature values on a row are larger than average, then the corresponding word
has a high probability of selection. We compute the score for each word to be sampled in the rationale
as follows :

pγ(w1..., wl|x) =
exp(

∑l
i

∑d
j Z̄ij)∑l

r exp(
∑l

i

∑d
j Z̄ij)r

(1)

where r iterates from the first word to the last word. From the probability distribution, we uncover the
rationale τ by sampling l̂ words τ ∼ pγ(w1..., wl|x) which produces the rationale τ ∈ Rl̂×d. Note that
the length of the rationale l̂ is defined by the user. During the test phase, we make predictions based on
what is the most likely assignment for each τ i using argmax. Note that pγ(w1..., wl|x) can be used to
measure the feature importance of each word.

2.1.2 Uncovering concept vectors and class prediction
Our goal is to group τ into concepts of interest (i.e., to transform rationales into meaningful concept
clusters) concurrently with rationale extraction. All rationales belonging to a given concept/class should
share common semantics. The main idea of our concept vectors is summarized as follows: 1) every class
is represented by a concept vector in the space, 2) each concept vector is used to cluster the rationales into
distinct clusters without further training, 3) we predict a concept of interest to present the class label, 4)
the concept vectors can be used to create a compressed model, and 5) the visualization of the rationales
through the clusters adds another level of abstraction.

Let β ∈ Rl̂ denote the probabilities of the sampled words. Given τ , let us suppose that an analyst is
interested in a concept representing negative sentiments in movie reviews, and wants to know whether
the rationales can be grouped into a single meaningful cluster. The point is that the clustered rationales
give the analyst a better understanding on how the model tackles the problem in general, and enables the
analyst to understand if the model is able to learn discriminating features from the raw embedding. We
first initialize a matrix of weights C ∈ Rm×d, where m is the number of target concepts and ci ∈ C
represents the concept vector for the target yi ∈ y. Our goal is to predict a concept of interest (i.e., a row
in the matrix) instead of a class label. β has l̂ elements, and τ has the same l̂ rows. We obtain τ̄ through
multiplying the values in the i-th row of τ by βi. We feed the rationale to any learning function, e.g.,
an LSTM ψ i.e., ψ(τ̄ ) to obtain a new latent representation Ĥ ∈ Rl̂×d, ĥi ∈ Ĥ . The last state ĥl̂ is fed
into a non-linear layer with parameters δconcept ∈ Rd×m which produces a score for every concept as
follows:

pδ(yconcept|τ̄ ) =
exp(ĥl̂ · δconcept)∑m

k=1 exp(ĥl̂ · δconcept)k
(2)

where, yconcept is the output probabilities of shape 1×m. Using this distribution we can predict a spe-
cific concept : yconcepts ∼ pδ(yconcept|τ̄ ). Using yconcepts , we can extract cs, which is the corresponding
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concept vector of the detected concept. The role of the concept predictor is to further enforce concept
consistency, i.e., the accurate prediction of a class is subject to consistent concepts. This allows concepts
to be jointly trained with the rest of the model. The predicted concept class should match the target
ground-truth label.

2.2 Formulating the learning problem in RANCC and compressing RANCC
Our objective function aims to learn the following tasks: (a) learning a rationale from text input, (b)
predicting a concept of interest, and (c) clustering a rationale based on its concept.

2.2.1 Learning rationales
Our loss function for the rational extraction aims to maximize the probabilities of salient words from the
rationale extractor layer. In general, the loss maximizes the log probability of the selected words that
lead to a correct prediction. Our optimization objective is defined as follows:

Lrationale = λ

(
−

s∑
i

Ai log p(β|x)

)
, (3)

where β is the probabilities of the selected words, s is the batch-size, λ is used to weight the importance
of this loss, and Ai is a scalar. For example, a scalar Ai could be 1 if the model predicts the correct class
label for x using the rationale τ and 0 otherwise. We used a custom gradient to pass the updates through
the sampling step in the rationale extraction layer. The custom gradient function works as follows: first
assign a gradient of 1 to each selected xi, and 0 otherwise.

2.2.2 Learning concept vectors
Each concept vector should correspond to semantically consistent rationales, i.e., all the rationales be-
longing to a given concept should share common semantics. We assume that every class has only one
single concept of interest. Each rationale must be assigned to a single concept vector and here we de-
scribe a way of integrating a clustering technique within a neural network text classification, for grouping
rationales. Our approach is capable of capturing the local structure of the high-dimensional data simul-
taneously with other tasks. We use cosine distance to cluster rationales based on their concepts, i.e.,
grouping similar rationales into a single cluster. The cosine distance is computed as follows:

Lclusters =

{
1− τ̂ •cs

‖τ̂‖‖cs‖ , if s = yi

0, otherwise
(4)

where • is the dot product operation, τ̂ is obtained by taking the average over the columns of τ̄ and s is
the index of the predicted concept vector cs. This loss is only applied if the prediction at the output layer
is correct given the rationale τ and the concept vector cs, otherwise the loss is set to zero. The reason
for doing this is to minimize the cosine distance only between the correct concept vector and rationale
(i.e., if extracted rationale resulted in a correct class prediction). By doing so, we are grouping similar
rationales into a single concept. Every rationale τ is clustered around its concept by computing the mean
(x-axis) and the standard deviation (y-axis) of (cs + τ̂ ) from every rationale.

2.2.3 Classifying rationales based on concepts
For text classification, we use the standard cross-entropy loss function to penalize miss-classifications
based on the predicted concept vector:

Lclassify = − 1

m

m∑
i=1

yi log(yconcepti ), (5)

where yconcepti is the predicted probability for class yi. We jointly learn the rationale extractor and
concept predictor. The final objective function is the sum of Equations (5), (3) and (4).

2.2.4 Model compression without extra computation
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Input: Sentence average embed-
ding t, Concepts C

Output: Target concept class ȳ
1: for Each concept ci ∈ C do
2: tmpSim = Similarity (ci, t)
3: if tmpSim > sim then
4: ȳ ← i
5: sim← tmpSim
6: end if
7: end for
Figure 3: Compressed model algorithm.

To create a compressed model, we create a simple classifier only
using the embedding features and the concept vector of each
class. The classifier is based on the cosine similarity between the
average of the raw embedding features of the input sentence and
the concept vector of each class. The target class is determined
as the corresponding label of the concept vector whose cosine
similarity is the highest. We will show the performance of the
compressed model in Section 4. The summary of this solution
is shown in Figure 3.

3 Related work

Most of the emerging work on explainability relies on approximating feature importance from a pre-
trained network, typically using perturbation and gradient-based methods (Sundararajan et al., 2017;
Shrikumar et al., 2017a; Arras et al., 2017; Zeiler and Fergus, 2014). These methods assign a score to
each word in the input text w.r.t the predicted class. One of the problems with post-hoc explanation is
that it is often computationally expensive. For instance, the method proposed by (Zintgraf et al., 2017)
takes up to one hour to produce a result. However, our approach is different, as it attempts to build a
self-explainable network. There are other post-hoc techniques that relied on decomposing the output
of LSTMs to learn feature importance (Murdoch and Szlam, 2017). They introduce a technique which
decomposes the output of the LSTM into a sum over word coefficients, then show how these coefficients
are meaningful with respect to a prediction — they later improved the approach (Murdoch et al., 2018).
Several other methods are based on learning from word vectors such as (Faruqui et al., 2015), while
some used auto-encoders with graph theory to provide explanations (Alvarez-Melis and Jaakkola, 2017).
Another approach for tackling explainability in text classification is to learn a rationale, i.e., a subset
of short and meaningful features from the text input. These methods focus on augmenting the neural
network with another network architecture to uncover the rationale by finding out which portions of the
input contribute most to the prediction of a target class (Lei et al., 2016; Bastings et al., 2019). Their
neural network creates a Bernouli distribution over the set of the input variables. During training they
sample from the rationale-network and during inference they use argmax over the distribution. How-
ever, the level of the abstraction of these methods is limited to the input level. In our case, we create a
self-explainable neural network to extract the rationale, thus making our approach end-to-end learning,
i.e., we only use a single neural network to extract a rationale for explainability. In addition, we go
beyond the rationales by introducing concepts and clustering rationales through concepts without addi-
tional computation. Recently some work started to consider concept extraction for NLP (Bouchacourt
and Denoyer, 2019). However, our approach attempts to learn meaningful clusters for concepts while the
existing work attempts to extract individual words to represent the concepts. Finally, there is a debate on
whether attention can be used for explanation or not. This is beyond the scope of this work and we refer
the reader to the following papers (Serrano and Smith, 2019) and (Jain and Wallace, 2019). In addition,
our work is different from topic modelling methods (Blei et al., 2003) as we attempt to learn clusters as
well as rationales concurrently with the classification in neural networks.

4 Experiments

Our primary intent is not predictive accuracy. We used standard practices for training without much tun-
ing. The aim of the experiments can be summarized as follows: 1) we show how RANCC outperforms
the state-of-the-art baselines for rationale extraction, 2) we show how RANCC outperforms feature im-
portance methods (i.e., post-hoc explanation methods), 3) we show how RANCC can be used to cluster
rationales without using any dimensionality reduction technique, 4) we visualize the concepts learned by
the classifier, 5) we visualize a few samples of the extracted rationales, and 6) we show the performance
of the compressed RANCC model. The hyperparameters used for the experiments are shown in Table 1.
Our implementation is available here. 1

1https://github.com/housamkhalifa/rancc
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Optimizer Adam
Text length 50 words for IMDB, 20 words for AGnews
Learning rate 1e− 3
Embedding dimension 300
Concept vector dimension 300
Cell LSTM
LSTM Hidden dimensions 300
Scalar A 1.0 if correct class prediction, 0.0 otherwise
Batch-size 256

Table 1: Hyperparameters used in the experiments.

4.1 Evaluating our method against self-explainable models

Objective. When rationalizing neural network text classification prediction, our goal is to perform as
well as systems using the full input text, while using only a subset of the text, leaving unnecessary words
out for explainability.
Rationalizing text prediction in sentiment analysis. We use the IMDB dataset that was proposed by
(Maas et al., 2011) for sentiment classification with two labels, positive and negative sentiments. It con-
sists of 25, 000 instances for training and 25, 000 instances for testing. We compare our approach against
the self-explainable approach proposed by (Bastings et al., 2019). For fair comparison, we followed the
hyperprameter suggested by the authors for implementing the baseline. We followed the metric proposed
by (Bastings et al., 2019), and we computed the accuracy as a function of the length of the extracted ra-
tionale. The higher the accuracy, the better the approach. Figure 4 shows the performance for various
percentages of selected text. Our approach outperforms the work of (Bastings et al., 2019), achieving
a similar accuracy as the baseline system which uses the full text, by using only the top 10% words
in the text. In addition, our model showed better accuracy than (Bastings et al., 2019) throughout all
the selected text experiments. This shows that RANCC captures better discriminating features than the
previous self-explainable model.

Rationalizing text prediction in news classification. We use the AGnews dataset (Zhang et al., 2015)
to test the performance on topic classification. The dataset consists of 127600 samples divided into 4
classes. We split it into training set 80% and testing set 20%. Figure 4 shows the results on AGnews,
and we can observe that our approach outperforms the baseline and the work of (Bastings et al., 2019),
achieving better performance.
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Figure 4: IMDB test accuracy (left) and AGnews test accuracy (right) for various percentages of extracted text. Baseline refers
to the LSTM network trained on the full text.

4.2 Faithfulness: are “relevant” features truly faithful to what the model computes?

Goal. Verify whether the estimated feature importance is actually “faithful” to what the model actually
computes. Common techniques for evaluating the importance rely on observing the effect on model’s
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prediction after removing a meaningful feature. In this subsection, we evaluate the faithfulness against
post-hoc explanations, by comparing the feature importance approximated by our approach and that of
the post-hoc methods. We use the AGnews dataset and IMDB, and the data is divided into the same
training and test sets of the previous experiments. We compare our method with several competitive
algorithms for feature importance scoring on black-box models, including gradient-based methods such
as ε-LRP (Bach et al., 2015), Grad*Input (Shrikumar et al., 2017b), and Intgrad (Sundararajan et al.,
2017) . For perturbation-based methods, we compare our approach against LIME (Ribeiro et al., 2016).

Change in log-odds ratio. The objective is to determine if the mean log-odds ratio of the predicted
class decreases as the percentage of masked features over the total number of features increases. We mask
the top k features ranked by importance score and those masked words are replaced by zero padding.
We then feed the input and measure the drop of the values between the probabilities of the target class
when no word is deleted, and when k words are removed. Figure 5 shows the results of the change in
log-odds ratio experiment on the AGnews dataset. Note that Grad*Input has the same performance as
ε-LRP. We can see that our method achieves the lowest log-odds ratio (the biggest change in log-odds
ratio) when removing salient features from the text input. This could be because our approach is not post-
hoc and thus the optimization considers maintaining both of the accuracy and explainability. Therefore,
RANCC could correctly capture the important features affecting the prediction output. From our results,
we can conclude that the explanation method produces a faithful explanation about which factors were
important in that calculation, so we can consider the explanation to be faithful to the model. This metric
was used in literature for model’s explanations (Shrikumar et al., 2017a).
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Figure 5: Change of log-odds ratio for various percentages of extracted rationale. Lower log-odds scores are better.

4.3 Jensen-Shannon divergence of model output distributions
We compare the impact of the model’s computed distribution when no feature is removed and when k
features are removed. Our approach here is to calculate the Jensen-Shannon Divergence (JSD) between
the two distributions. We show the results on the post-hoc explanation techniques in Figure 6. This
experimental result shows that the removed features within RANCC affect the output distribution of the
model much more than the other methods. This means that RANCC captured the important features
better than the other methods. Given the countless number of baselines and rapid development in this
area, we note that our performance is not compared against all of the existing methods, largely due to
challenges with source code access, and space limitations for this document.

4.4 Visualizing concept clusters
Our approach is also capable of clustering data points simultaneously with the classification task, i.e.,
our neural network is capable of providing distinct clusters related to specific concepts. The clustering
results on IMDB are shown in Figure 7. As we can observe, our approach achieves better clusters than
t-SNE (Maaten and Hinton, 2008) and PCA. Our method groups movie reviews into unique clusters
based on their concept vectors without using dimensionality reduction techniques. Figure 7 shows that
our concepts of positive and negative sentiments are clearly separated from each other. The clustering
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Figure 6: JSD on the IMDB and AGnews. The higher the value, the better the method.

results on AGnews are also shown in Figure 7 which displays the 4 clusters (these are the four classes
in the dataset representing four concepts). Our work does a better job of revealing the natural classes
in the data than t-SNE and PCA, and thus RANCC is better in accurately generating distribution and
partitioning the data. The idea of concurrently clustering/grouping rationales into clusters is a unique
feature in our approach which has been learned without additional computation. The merit is that, you
do not need to use a clustering algorithm over the embedding to obtain the target cluster. This clustering
helps explain the extracted rationales and prediction outcomes. This approach makes our work unique
compared to other explainability methods. Additionally, to the best of our knowledge, this is the first
approach to provide concepts in terms of clusters and to be able to learn them simultaneously for text
classification in a deep learning model.

(a) RANCC:IMDB. (b) PCA:IMDB (c) t-SNE:IMDB.

(d) RANCC: AGnews. (e) PCA: AGnews (f) t-SNE:AGnews.
Figure 7: Clusters of correctly classified rationales using concept vectors for both IMDB and AGnews using RANCC, PCA

and t-SNE. Please note that the mean and standard deviation are obtained from the clustering.

.

4.5 Using the clustering visualization as a debugging tool
One of the challenges when debugging a neural network model is to understand errors and when they
occur. More specifically, we are interested in which class the model mistakenly classified the text input.
A general solution is to write a piece of code and use many print statements to debug it and to understand
the miss-classified input. But by using the clusters, we can easily visualize the miss-classified inputs and
understand to which class the input was incorrectly classified. Looking at the results from Figure 8, one
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can visually identify the errors and can save much time for debugging, rather than using print statements
or other clumsy alternatives. For instance, Figure 8 shows that in the AGnews, the model struggles in
learning meaningful features for the business class and the same issue is applied to the IMDB for the
positive sentiment.

(a) RANCC: Debugging AGnews. (b) RANCC:Debugging IMDB.
Figure 8: Clusters of rationales for identifying miss-classification.

4.6 Understanding concepts
An important question is what kinds of words are encoded in each rationale to represent a concept of
interest? Each discovered concept can be understood from the corresponding rationale which activates its
appearance: for example in the AGnews, the concept the model identifies is inferred from the following
detected word: Microsoft, Software, and Internet. With these words, we can identify that the concept of
these texts is “science/technology.” The same reasoning applies to the other rationales such as Company,
Inc, Oil, and Price which correspond to the “business” concept. The other rationales, such as President,
government, leader, and official, correspond to the “world news” concept, and game, and team correspond
to the “sport news” concept (See Table 2). The same reasoning can be applied to the IMDB movie
reviews. Our model is able to discover interesting words which correspond to meaningful concepts as
shown in Table 3.

Class Top words
World news president, government, leader, official, security, war, attack, nation, police, foreign
Sport news sport, team, victory, football, final, home, season, game,club, fan, champion, player, title, championship, star, field
Tech/Sci news technology, program, microsoft, software, internet, service, window, network, pc, operating system
Business news market, company, billion, firm, cost, cut, federal, report,profit, earning, research, international,share

Table 2: Visualizing top words used in each concept for AGnews.

Class Top words
Positive sentiment interesting, pretty, original, horror, cool, kind,great, see
Negative sentiment bad, waste, worst, poor, boring, stupid, awful

Table 3: Visualizing top words used in each concept for IMDB.

4.7 Visualizing extracted rationales
We also visualize the rationales extracted from the IMDB movie reviews on a single concept from IMDB
(i.e., positive sentiment concept). As we can see from Figure 9, our approach is capable of capturing
meaningful rationales. Through the highlighted rationales, we can see that they are semantically similar,
that is, they can be grouped in a single consistent concept.

4.8 Model compression
We show how our compressed model achieves close results to the original trained RANCC model, with-
out re-training. We show the performance on the AGnews dataset (see Table 4). In Table 4, 10% and
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hour of the film had me in tears with the honesty of the emotions is not everyone’s cup of tea but unlike the little she
has written some truly sympathetic wonderful characters and a fine story given a casting and production values by warner

brothers highly recommended
stumbles on to three other strange with past residents of the same house i won’t say anymore for i will ruin the movie more
than i already have but it is a terrific movie for as old as it is and would never mind watching it again
comedy which is a very fitting title for this movie as well as for the whole genre that practically invented and the cult favorite
for over 20 years 1986 is brilliant and deserves our true love and genuine for the unforgettable moments of cinematic
happiness
a great selection of the finest british talent around i loved them all for every diverse element brought into the film italy has
to be one of the most romantic places to form a story such as this everything about this film works i love it
che’s capture and death are dealt with well the film is greatly enhanced by the dialogue being in spanish
del toro is again excellent as the charismatic so if you’ve seen part 1 you will see a very similar telling of a very different

story in part 2.
Figure 9: Visualizing the extracted rationales of different lengths. Highlighted text represents the extracted rationale for the

positive concept.

40% mean the percentages of the extracted words as a rationale. Our compressed model shows close
performance to the original RANCC model and without much loss in performance.

Method F1 Recall Precision Accuracy
RANCC (10%) 0.856 0.857 0.858 0.86

Compressed (10%) 0.827 0.857 0.858 0.827

RANCC (40%) 0.876 0.876 0.878 0.87

Compressed (40%) 0.865 0.866 0.866 0.866
Table 4: Comparison of the performances between RANCC and compressed RANCC.

5 Conclusion and Future work

We have presented a new approach for a self-explainable neural network applied to text classification, and
presented new techniques for alternative explanations. Our extracted rationals were important features
affecting the prediction, and the visualization of the concept clustering improved the explainability of
black-box models. In future work, we are interested in understanding more about the semantic distance
between rationales and the concept vectors, as well as the semantic distance between every word in a
sequence and its concept vector. We will also further investigate the explainability of the compressed
RANCC model, and aim to investigate our approach’s explainability in other NLP tasks, such as natural
language inference, and language generation in a specific domain of medicine or law.
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