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Abstract

Morphological inflection, like many sequence-to-sequence tasks, sees great performance from
recurrent neural architectures when data is plentiful, but performance falls off sharply in lower-
data settings. We investigate one aspect of neural seq2seq models that we hypothesize contributes
to overfitting - teacher forcing. By creating different training and test conditions, exposure bias
increases the likelihood that a system too closely models its training data. Experiments show that
teacher-forced models struggle to recover when they enter unknown territory. However, a simple
modification to the training algorithm to more closely mimic test conditions creates models that
are better able to generalize to unseen environments.

1 Introduction

Morphological inflection has gained substantial interest in recent years due to a number of shared tasks
focusing on morphology learning (Cotterell et al., 2016; Cotterell et al., 2017; Cotterell et al., 2018;
McCarthy et al., 2019; Vylomova et al., 2020; Kann et al., 2020). Systems for inflection are trained on a
sequence of pairs: {Lemma, MorphoSyntactic Descriptor (MSD)}, free of context, and must
produce as output an inflected word form. For example, given the input pair {run, V.PTCP;PRS}, a
successful system should produce the present participial form: running.

The shared tasks have illuminated several idiosyncrasies of inflection. Although the state-of-the-art
methods have been inspired by Neural Machine Translation (NMT), inflection is, in many ways, a more
straightforward task. Often, a majority of characters can be copied directly from input to output, and
reordering of tokens is not necessary to the extent that it is in translation. Thus, systems with copy-
mechanisms (Makarov et al., 2017), and hard, monotonic attention (Aharoni and Goldberg, 2017) tend
to perform well, even when data is scarce.

Recurrent neural architectures require that the output from a previous time step be fed back into the
model. During training, existing systems all use a variant of teacher forcing, which feeds gold-standard
tokens into the model at time t + 1. This methodology differs significantly from how the model pro-
gresses at test-time, where silver tokens must be used. This problem has been dubbed exposure bias by
Wiseman and Rush (2016). We hypothesize that exposure bias can lead models to overfit the training
data, particularly in low-resource settings.

In this paper, we compare teacher forcing to silver label propagation, or student forcing, where model
predictions are fed into the decoder during training instead of gold standard labels. Our experiments
on a geographically and linguistically diverse set of 10 languages show that student forcing typically
outperforms teacher forcing in a low-resource setting.

Our analysis of the results suggests that teacher forced models are, indeed, overfitting the training data
by ignoring input characters at test time. We note substantial gains when student forcing is applied to
soft-attentional systems, which bears promise for tasks other than inflection; however, less prominent
gains are also observed in conjunction with hard attention.

This work is licensed under a Creative Commons Attribution 4.0 International License. License details: http://
creativecommons.org/licenses/by/4.0/.
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Figure 1: Teacher forcing (left) and Student forcing (right); some connections have been left out to
reduce clutter.

2 Methods

We investigate the role that teacher forcing plays on morphological inflection by comparing it against a
simple alternative learning strategy, which we call student forcing. In our experiments, we apply student
forcing to three established neural inflection models: the Pointer-Generator network (PG), a soft attention
model originally introduced for document summarization (See et al., 2017) and subsequently applied to
inflection by Sharma et al. (2018), a neural transducer utilizing hard attention trained on aligned lemmata
and inflected word forms (Aharoni and Goldberg, 2017; Makarov et al., 2017) (HA) and modified with
an explicit copy mechanism, and a later development of the HA system which applies minimum risk
training in order to avoid relying on an explicit aligner for the lemma and inflected word form during
training (MRT) (Makarov and Clematide, 2018a).

2.1 Student forcing
Teacher and student forcing are illustrated in Figure 1. On the left, the teacher-forced system feeds the
gold character from time t into the decoder to predict the character at time t + 1. The student forcing
system, on the right, instead feeds the predicted token from the model. Both systems in this toy example
make a mistake in their predictions, but must learn different correction strategies – the teacher-forced
system must learn to “get back on track” after an error, while the student-forced system must only be
conditioned on its previous prediction, regardless of whether it has made an error or not. While teacher
forcing provides a stronger signal, student forcing is more similar to what the system will observe at test
time. It can be seen as a special case of a more general approach which employs beam search during
training (Wiseman and Rush, 2016).

While the two extremes depicted in Figure 1 force a system to learn using one method or the other,
systems typically benefit from a mixture of the two - leveraging the gold information of teacher forcing,
while resisting exposure bias through a small amount of student forcing. Therefore, we alternate between
teacher and student forcing during training. For each training example, we randomly select either student
forcing with probability P or teacher forcing with probability 1 − P .1 We treat the probability P as a
hyperparameter and tune it on a held-out development set. In our preliminary experiments, we considered
alternative strategies, including assigning the decoder strategy at the character level, and schedules that
increased or decreased P at set epoch intervals. Our most consistent results were obtained with a word-
level constant P , and this is the only method described in the experimental results.

During development, we also experimented with transformer architectures (Vaswani et al., 2017), but
found that they performed extremely poorly in the low-resource setting. As low-resource is the focus of

1We apply mini-batch training and one mini-batch can contain both teacher forced and student forced training examples.
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our attention, we did not continue to explore transformers.

2.2 Student forcing for PG

We modify the pointer-generator network to incorporate student forcing by enhancing the decoder to
accept predicted tokens instead of gold-standard ones. If student forcing is assigned to an example, we
perform inference alongside training (after disabling gradient accumulation), producing the predicted
token for each timestep t. At time t+ 1, the predicted token is added to the decoder input in place of the
gold target token.

2.3 Student forcing for HA and MRT

Our implementation of student forcing for the hard-attentional model is similar to that for the pointer-
generator: at time t, we generate the predicted edit-action given the current state of the decoder, and
subsequently, the predicted token. However, hard attention makes it difficult to completely discount the
gold target. The attention relies on alignments generated prior to training, and we do not generate new
alignments for the student-forcing. The regeneration of alignments at every time step would result in
an unacceptable slowdown of training. While we make use of the gold target for attentional purposes,
we replace the input to the decoder with the character predicted at time t, rather than the gold target
character.

We make no modifications to the MRT training algorithm from the original system, beyond the modi-
fications made to the decoder.

3 Related Work

To the best of our knowledge, there has been little investigation into the role of teacher forcing for
inflection systems. However, Bengio et al. (2015) apply scheduled sampling for RNN’s in the context
of image captioning, constituency parsing and speech recognition. This approach has been extended to
transformers by Mihaylova and Martins (2019). During training, Bengio et al. (2015) randomly sample
either the gold standard token yt−1 or the model suggestion ŷt−1 when predicting yt. The probability
for selecting a model suggestion rather than the gold standard example is continuously increased during
training which they call scheduling. Our work can be seen as an application of this approach except that
we make the choice between gold standard context and the model suggestion at the example-level instead
of the level of individual characters. According to our preliminary experiments, this delivered superior
results in the task of inflection. Another difference is that we fix the probability for choosing the model
suggestion throughout training and treat this as a hyperparameter. We do this because we did not observe
consistent improvements from scheduling.

Goyal et al. (2017) present a modification of the approach by Bengio et al. (2015) for named-entity
recognition and machine translation. They replace the argmax model prediction with an average of all
output embeddings, weighted by the prediction scores. Also related to scheduled sampling is the ap-
proach by Wiseman and Rush (2016) who experiment with beam search. The downside of this approach
is that it can substantially increase training times.

4 Data and Experiments

In this section, we lay out our experiment schedule, and describe the system architectures, hyper-
parameters, and data specifications. We also motivate our choice of evaluation metrics.

4.1 Data

For evaluation, we choose 10 languages from the evaluation data set of the 2018 ConLL-SIGMORPHON
Shared Task on Morphological Reinflection (Cotterell et al., 2018). Languages were chosen to represent
a wide variety of morphological phenomena. We perform experiments on Arabic, Basque, English,
Finnish, German, Navajo, Persian, Sanskrit, Turkish, and Zulu. These ten languages represent a variety
of writing systems, including alphabets, abjads (Arabic and Persian), and abugidas (Sanskrit). They
demonstrate fusional, agglutinative (Basque, Finnish, Turkish, Zulu) and templatic (Arabic) inflection.
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They both suffix and prefix (Navajo, Zulu) extensively. We feel that our language set will allow at least
some investigation into the role that linguistic typology plays on exposure bias and the choice of neural
inflection models.

We use the standard data splits, consisting of 1000 development and testing instances, and run exper-
iments in three training settings – low, medium, and high, consisting of 100, 1000, and 10,000 training
instances, respectively. Systems are evaluated using two metrics: whole word accuracy, and Levenshtein
distance, normalized by the length of the inflected form.

Word accuracy has come to be the dominant evaluation metric for inflectional systems, following the
standards of the Shared Tasks2. However, accuracy does not tell the entire story - we hypothesize that
although teacher-forced systems perform very well on instances that resemble training examples, they
do very poorly on novel examples. When determining the plural of “dog”, accuracy will assign the same
score to a system that produces “doggs“, and one that produces “elephants”. While we do not claim that
inflectional models make mistakes of this magnitude, a high edit-distance paired with a high accuracy
may suggest significant mistakes are being made in incorrect predictions. Furthermore, student forcing
is applicable to other learning tasks where all-or-nothing evaluations are less frequent - BLEU score, for
example, has much more in common with edit distance than accuracy.

Our pointer-generator network uses the PyTorch implementation from OpenNMT (Klein et al., 2017).
They were trained for 10,000 steps, except for the “high” setting, which was trained for 20,000, upon
observation that 10,000 steps was not enough for convergence. Model checkpoints were saved every
500 steps, and the model with the highest development accuracy was used for inference. Under the low
setting, the RNN hidden dimension was set to 50, while in the medium and high settings, the RNN size
was set to 200. All models were run on 10 different random seeds, using general copy attention. All
other system parameters were set to the OpenNMT defaults.

Our HA model was trained using the best training parameters of Makarov and Clematide (2018a),
employing their hard-attentional model with a copy mechanism (HACM). We use a single-layer encoder
and decoder of 200 hidden units, with a character embedding of size 100 and an action embedding of size
100, no dropout, and a ReLU non-linearity function. The models in the low settings train for a maximum
of 60 epochs, with patience of 20 epochs. The medium setting trains for 30 epochs, and the high for 20
- each with patience of 10 epochs. Alignments are obtained using the longest common substring. MRT
models sample 20 instances from the distribution.

MRT systems are initialized with the best model obtained via teacher-forced HA training, making
our teacher-forced results equivalent with those described by Makarov and Clematide (2018b). Student
forcing is applied to subsequent MRT training epochs. While it would be possible to initialize the MRT
models with student-forced models, we feel that any comparison between these systems would be dif-
ficult to make - gains in any metric could be attributed to either the initial model’s distribution, or to
the MRT with student forcing. We leave further exploration of combining student forcing with MRT to
future work.

4.2 Experiments

Development experiments demonstrated that although pure student forcing (ie, P=1.0) occasionally out-
performed teacher forcing, the results were inconsistent. Teacher forcing regularly dominated the accu-
racy metric, and gains in edit distance were small. It appears that the strong signal provided by teacher
forcing is necessary to accommodate learning, particularly early in training, when inference is very poor.

We thus experiment tuning the percentage of student forcing used by the model. In our first experi-
ment, we train the pointer-generator network while tuning student forcing from 0% to 50%. The results
are plotted in Figure 2.

When we allow the percentage of examples using student-forcing to become a tunable hyper-
parameter, the advantages of including some noise in the training of the model become clear. In the
low setting, we see large gains in accuracy for half of our evaluation languages, and notable decreases
in edit distance for nine of them. Likewise, in the medium setting, we see modest improvements in

2The tasks also evaluate with edit distance, but it is given much less focus in the discussion
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Figure 2: Results of training pointer-generator inflection networks with tuned percentages of student
forcing. The languages: Arabic (AR), Basque (EU), English (EN), Finnish (FI), German (DE), Navajo
(NV), Farsi (FA), Sanskrit (SA), Turkish (TR) and Zulu (ZU). The first row corresponds to the low
setting, the second to the medium setting, and the third to the high setting.
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both metrics for all of our languages. In the high setting, there is less improvement – 10,000 training
examples proves sufficient to expose the model to enough environments that it is not regularly surprised
during inference.

In our next experiment, we consider the same settings as our first experiment, but instead train using
the HA model. Figure 3 plots the results. We first note that in the low and medium settings, the HA model
is significantly more accurate than the PG model. This result is not overly surprising - when training data
is small, hard attention has been shown to help inflection (Aharoni and Goldberg, 2017). However, even
with the more accurate models, student forcing improves over the teacher baseline - particularly with
respect to edit distance. Furthermore, unlike the pointer-generator, we continue to see small gains even
in the high setting.

Finally, we extend the HA models with MRT. Perhaps not surprisingly, we see little gain from com-
bining student forcing and MRT. As described by Makarov and Clematide (2018a), their implementation
of minimum risk training is specifically designed to counter exposure bias. Sampling from the model’s
distribution and injecting noise from the model’s predictions are similar strategies for countering expo-
sure bias. If we compare MRT and teacher forcing directly, we find that in the low and medium settings,
MRT outperforms student forcing by approximately 1%, on average - but requires twice the training time
to get there.

In Figure 4, we plot the average error reduction obtained with student forcing over the teacher-forced
models. We see that although the gains for hard-attention are small, they surprisingly increase as training
data increases. The gains obtained are complementary to the improvements that can be attributed solely
to hard attention. In the next section, we provide more in-depth discussion of the types of errors that are
being corrected by student forcing.

5 Discussion

We now turn our attention to the output of our systems, and devote some discussion to certain trends that
we observed.

HA vs. PG It is quickly apparent that the Hard Attentional model is superior to the pointer-generator,
at least when training data is low - one hundred training examples is simply insufficient to learn an
adequate soft attention mechanism. However, once training data is available in sufficient quantities, the
pointer-generator approaches, and even, in some circumstances, surpasses the hard attentional model. In
particular, the Navajo model struggles with the constraints present with hard attention, but Basque and
Persian also benefit from soft attention.

We also note that while the pointer-generator sees the most benefit from student-forcing in the low
and medium settings, the hard attentional model steadily improves as data increases. We find this to
be a surprising result - by the time a model has observed 10,000 training examples, exposure bias is
much less of a concern. It is possible that the soft attention mechanism is performing much of the same
type of regularization that we would expect from student forcing - but only becomes strong enough to
completely supplant it in the higher data setting.

The HA model, conversely, requires pre-computed alignments, and the quality of these alignments
may impact the results significantly. Using these alignments as an approximation of when the model
must learn insertion, deletion, or substitution operations, we note that Navajo requires, on average, more
than 50% more substitutions than the next closest languages – Arabic, Basque, and Persian. Basque
and Persian, in particular perform worse with hard attention in the medium and high settings, while
Arabic does so in the high setting. On the other extreme, English, Sanskrit, and German perform few
substitutions, and clearly prefer hard attention. Substitutions are much more complex operations than
either insertions or deletions, and much harder to generalize. It is possible that hard attention is too strict
to fully capture the intricacies of a complex substitutional morphology.

Insertions / Deletions When we look closer at insertions and deletions, particularly in the low setting,
we observe an interesting pattern of errors. Analyzing English - a language that benefits immensely from
student forcing, we see that teacher-forced models regularly adopt a “clipping” strategy, eliminating
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Figure 3: Results of training hard-attentional inflection models with tuned percentages of student forcing.
The languages: Arabic (AR), Basque (EU), English (EN), Finnish (FI), German (DE), Navajo (NV),
Farsi (FA), Sanskrit (SA), Turkish (TR) and Zulu (ZU). The first row corresponds to the low setting, the
second to the medium setting, and the third to the high setting.
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Figure 4: Error reduction rates in percentage under different data settings. PG refers to the Pointer-
Generator, HA to hard attention and MRT to minimum risk training

long sequences of characters at the ends of words. For example, the past tense of the English verbs
“architect” and “retrospect” are respectively predicted as “*archited”, and “*retrosped“. The trigram “-
ect” is relatively rare in English, and is not observed in training. The teacher-forced model learns that “p”
and “t” are viable word-final characters, and that “-ed” is a good suffix for the past tense. “-ed” is much
more likely than “-ec”, and so the “ect” is clipped from the output. The student-forced model corrects
both of these mistakes. Although it still identifies “-ed” as a good suffix, it also learns that copying the
input characters is much more likely than deleting, regardless of the previous character.

In an attempt to further classify errors, we calculate the number of prediction errors that are insertions
or deletions for each language, as well as the average number of characters that are inserted or deleted
with each operation. Furthermore, we calculate whether one or the other is more likely to be corrected by
student forcing. We find that, on average, teacher forcing makes more insertion mistakes than deletions
(although English is an exception, with 25% more deletions). The student model corrects nearly 37% of
insertions, and 27% of deletions. What’s more, the student model also significantly reduces the length
of errors - reducing the average insertion mistake from 2.5 characters to 1.8, and the average deletion
mistake from 2.0 characters to 1.6. By correcting deletion errors, student forcing manages the clipping
problem. Correcting spurious insertions, on the other hand, eliminates errors that occur when the model
finds itself in an unfamiliar environment, and it generates false characters in an attempt to escape. For
example, the pluralization of the German “Nadelbaum” requires umlaut to produce “Nadelbäume”, but ä
is a relatively rare character, so the model incorrectly produces “m”, which drives the model into another
unusual environment. Although the model eventually recovers, the predicted output: “*Nadelbmumum-
mue” is quite distant from the gold target.

Navajo Many of the languages we have investigated follow a regular pattern of results, particularly
in the low setting – the pointer-generator performs poorly with teacher forcing, improves with student
forcing, is outpaced by the HA model, which in turn then benefits from student forcing and MRT train-
ing. However, across all settings and experiments, there is one outlier - Navajo. Navajo sees little
improvement from student forcing, regardless of the training algorithm. Furthermore, its performance
lags behind other languages when the data increases. When MRT is applied, ED spikes under teacher
forcing – quadrupling in the low setting as exploration reveals a weak distribution. We hypothesize that
Navajo has several typological features that make it ill-suited both to student-forcing and hard-attentional
low-resource models.

As previously indicated, Navajo has a significant number of stem changes, which may make learning
with hard-attention difficult – nearly all of the improvement of the PG over the HA in the high setting
can be attributed to Navajo. Secondly, Navajo is a primarily prefixing language. Our implementation of



2845

student forcing progresses from the beginning of the word to the end, and makes some strong assumptions
in doing so. Suffixing languages will learn to copy characters at the beginning of the word, an easy
task that can be learned quickly. This establishes a strong language model before any true inflection
occurs – by the time the first suffix character is produced, the model will have a strong prediction of
the previous characters. This is not true of prefixing languages, which have no prior language model to
inform prefixes; the information from the teacher serves as a strong regularizer. Zulu is also a strongly
prefixing language, but the majority of the inflection in our data set consists of insertion. If insertions are
easier to learn than substitutions, then it is reasonable that Zulu will eventually be able to learn a strong
inflectional model, as long as it has some access to gold recurrence.

Future work The method described in this paper should be easily portable to other machine learning
tasks that use RNNs. Furthermore, our results with the pointer-generator suggest that tasks that are less
suited to hard attention may benefit the most from student forcing.

Secondly, we believe that a natural extension of student forcing would leverage the entire distribution,
rather than a greedy prediction. Implementing a beam search over predictions, such as Wiseman and
Rush (2016) might allow the model to further probe the inflectional language model.

Finally, we believe that more investigation of a wider selection of languages is necessary. While we
attempted to investigate a diverse set of languages, the exceptions to the observed trends are too small
to make strong conclusions. We would need to expand to other languages that are typologically similar
to our exceptional languages like Navajo. In particular, there is very little inflectional literature on tonal
languages, which can greatly expand the state space of potential operations.

6 Conclusion

We have presented student forcing, a simple method for countering exposure bias. The dissimilarity
between how information is presented to the decoder during training and inference can lead models to
overfit to the particular environments observed in the training data. By injecting some noise into training,
through the modification of the recurrent step of the RNN, we create a training scenario that more closely
models what systems will see at test time. We demonstrate that this simple change can lead to moderate
improvements in morphological inflection, a simpler version of the general sequence-to-sequence task.
Whether measured in accuracy or edit distance, the evidence shows that student forcing injects enough
variety into training that it becomes less prone to overfitting. While noise is typically seen as an obstacle
to overcome in machine learning, a little bit injected in the right place can encourage learning over
memorization.
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