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Abstract

Sentiment forecasting in dialog aims to predict the polarity of next utterance to come, and can
help speakers revise their utterances in sentimental utterances generation. However, the polar-
ity of next utterance is normally hard to predict, due to the lack of content of next utterance
(yet to come). In this study, we propose a Neural Sentiment Forecasting (NSF) model to ad-
dress inherent challenges. In particular, we employ a neural simulation model to simulate the
next utterance based on the context (previous utterances encountered). Moreover, we employ a
sequence influence model to learn both pair-wise and seq-wise influence. Empirical studies illus-
trate the importance of proposed sentiment forecasting task, and justify the effectiveness of our
NSF model over several strong baselines.

1 Introduction

Developing intelligent chatbots is of great appealing to both the industry and the academics. However
it is challenging to build up such an intelligent chatbot which involves a series of high-level natural
language processing techniques, such as sentiment analysis of utterances in dialog.

Previous studies on sentiment classification focus on determining polarity (positive or negative) in a
single document (Pang and Lee, 2008; Amplayo et al., 2018). In comparison, only few studies focus on
determining polarity of utterances in dialog (Herzig et al., 2016; Majumder et al., 2018). However, all
of these studies focus on determining the polarity of existing utterances. It may be more important to
predict the polarity of next utterance yet to come. Given the example in Figure 1, although B expresses
a positive sentiment in second utterance, A still shows a negative sentiment in his response. In this case,
if B know that A would be very upset after his first utterance, he may revise his utterance to let A feel
more comfortable. Hence, predicting the polarity of the next utterance can help a speaker to improve
their utterances, which is important in automatic dialogue, such as customer service.

To the above purpose, we propose a new task, calls sentiment forecasting in dialog, which aims to
predict the polarity of next utterance yet to come. In this paper, we focus on tackling two inherent
challenges, one is how to simulate next utterance, and the other is how to learn the influence from context
towards next utterance. The motivations behind are that, since next utterance is yet to come, it would
be helpful if we can simulate next utterance from the context. Moreover, the polarity of next utterance
can be much influenced by the context, it is necessary to consider the influence of the context for next
utterance.

In this paper, we propose a Neural Sentiment Forecasting (NSF) model to address above challenges. In
particular, a neural simulation model is employed to simulate next utterance based on existed utterances.
In addition, a hierarchical influence model is employed to learn the influence from existed utterances
by considering both pair-wise and sequence-wise influence between existed utterance sequence and next
utterance. Empirical studies illustrate the importance of proposed sentiment forecasting task in dialog,
and also show the effectiveness of our proposed NSF model over several strong baselines.

This work is licensed under a Creative Commons Attribution 4.0 International Licence. Licence details: http://
creativecommons.org/licenses/by/4.0/.
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A: John, I've asked you not to smoke in here! 
I don't want to see you smoking in my office 
again. 

B: I'm sorry, Ms. Fairbanks. I won't let it 
happen again. 

A: Negative (That's what you said the last 
time! If you want to smoke, you'll have to use 
your break time and go outside! )

Figure 1: Example of dialog for sentiment forecasting.

2 Related Work

Our task is related to document-level sentiment classification (Pang and Lee, 2008) for various neural
network models have been used, including convolutional neural networks (Kim, 2014), recursive neural
network (Socher et al., 2013) and recurrent neural network (Teng et al., 2016; Tai et al., 2015). More
recently, researches focus on aspect level sentiment analysis (Tang et al., 2016; Tay et al., 2018; Huang
and Carley, 2018) and user-based or product-based sentiment classification (Chen et al., 2016; Song et
al., 2017; Amplayo et al., 2018).

Different from document-level sentiment classification, sentiment classification in dialog aims to de-
tect polarity of utterances in dialog by considering the influence of the whole dialog. As a prime study,
Ruusuvuori (2012) stated that sentiment plays a pivotal role in conversations. Zhang et al. (2011) studied
the impact of sentimental text on the customer’s perception of the service agent. On the basic, Herzig
et al. (2016) used SVM to classify sentiment in customer support dialogs by integrating both text based
turn and dialog features. Recently, Cerisara et al. (2018) proposed a multi-task hierarchical recurrent
network to classify sentiment and dialog act jointly. Majumder et al. (2018) proposed a recurrent neu-
ral networks to track of the individual states throughout the dialog and employed this information for
sentiment classification.

Different from previous studies which focus on detecting the polarity of existing utterances, we pro-
pose a novel and important task to forecast polarity of next utterance yet to come.

3 Neural Sentiment Forecasting Modeling

As illustrated in Figure 1, given a existed utterance sequence {u1, u2, ..., un−1} in a dialog d, we aim to
predict the polarity (positive, negative, or neutral) of next utterance un. Note that, next utterance un does
not exist in dialog, and we do not know the polarity of utterances in existed dialog sequence.

Figure 2 shows the overview of proposed Neural Sentiment Forecasting (NSF) model. We first learn
the representation of each utterance ui. Secondly, we employ a neural simulation model to simulate the
representation of next utterance ûn based on the existed utterance representations. Thirdly, we employ a
hierarchical sequence influence model to learn the influence from existed utterance sequence to the next
utterance ûn. Finally, we predict polarity ŷ of next utterance ûn based on the simulation model and the
influence from existed utterances. In the following, we discuss these issues one by one.

3.1 Existed Utterances Representation
Firstly, we need to learn the representation of existed utterances in dialog. Given a utterance ui with
m words {w1, w2, ..., wm}, we transform each token wi into a real-valued vector xi using the word
embedding vector of wi (Mikolov et al., 2013). We employ LSTM model (Hochreiter and Schmidhuber,
1997) over ui to generate a hidden vector sequence (h1, h2, ..., hm). At each step t, the hidden vector
ht of LSTM model is computed based on the current vector xt and the previous vector ht−1, and ht =
LSTM(xt, ht−1). In particular, the initial state and all stand LSTM parameters are randomly initialized
and tuned during training. In this way, we can use Hi = hm as the representation for utterance ui in the
context.
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Figure 2: Overview of the neural sentiment forecasting model.
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Figure 3: Architecture of neural utterance simulation model.

3.2 Neural Utterance Simulation Model
After we learn the representation H = {H1, H2, ...,Hn−1} from existed utterance sequence, we employ
a neural utterance simulation model to simulate the next utterance ûn from H , and the overview of pro-
posed neural utterance simulation model is illustrated in Figure 3. In particular, since the polarities of
utterances from the same speaker are correlated, same speaker concatenation model is used to concate-
nate the utterances from same speaker of un as a basic simulation. Moreover, since the polarity of un
is influenced by its context in dialog, dialog attention model is employed to consider the influence from
dialog sequence for simulating un.

Same Speaker Concatenation. To construct a basic simulation of u′n, we concatenate the utterances
from same speaker of un:

u′n = H2 �H4 � ...�Hn−2 (1)

where {H2, H4, ...,Hn−2} denotes the sequence which is from the same speaker of un, and u′n is a basic
simulation of un.

Dialog Attention. After getting the basic simulation u′n, we then use dialog attention model to learn
influence from utterance sequence to u′n for simulating un.

First, we learn the dialog representation d by concatenating the utterance sequence
{H1, H2, ...,Hn−1}:

d = H1 �H2 � ...�Hn−1 (2)

Then, we use attention mechanism to learn influence from dialog representation d to the basic simula-
tion u′n. The attention model outputs a continuous vector ûn ∈ Rd×1 recurrently by feeding the hidden
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Figure 4: Architecture of hierarchical sequence influence model.

representation vectors u′n = {hn1, hn2, ..., hnm} as inputs. Specifically, ûn is computed as a weighted
sum of hnj (0 ≤ j ≤ m), namely

ûn =

m∑
j

αjhnj (3)

where αj ∈ [0, 1] is the weight of hnj , and
∑

j αj = 1. For each piece of hidden state hdj ∈ d from the
hidden representation of the dialog representation, the scoring function is calculated as follows:

vj = tanh(Whdj + b) (4)

αj =
exp(vj)∑
k exp(vk)

(5)

In this way, the vector ûn is learned as the simulation of un from the existed utterance sequence H .

3.3 Hierarchical Sequence Influence Model
After we simulate the next utterance ûn from existed utterance sequence, we employ a hierarchical
sequence influence model to learn influence from existed utterance sequence d to the simulated next
utterance ûn. The overview of hierarchical sequence influence model is shown in Figure 4.

In the hierarchical sequence influence model, we consider both pair-wise and sequence-wise influence
model to learn the influence from existed utterance sequence to the simulated next utterance. The pair-
wise influence model is used to learn the influence from each utterance to the next utterance, and the
sequence-wise influence model is used to learn influence from utterance sequence to the next utterance.
Finally, we integrate the representations from pair-wise and sequence-wise influence model into a unified
representation to learn influence from whole utterance sequence collectively.

3.3.1 Pair-wise Influence Model
Firstly, we employ attention mechanism to learn the pair-wise influence from utterance ui to the simulat-
ed next utterance ûn. The pair-wise attention model outputs a continuous vector vpi ∈ Rd×1 recurrently
by feeding the hidden representation vectors Hn = {hn1, hn2, ..., hnm} from ûn as inputs. Specifically,
vpi is computed as a weighted sum of hnj (0 ≤ j ≤ m), namely

vpi =
m∑
j

βjhnj (6)
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where m is the hidden variable size, βj ∈ [0, 1] is the weight of hnj , and
∑

j βj = 1. For each piece of
hidden state hij ∈ Hi from the hidden representation of ui, the scoring function is calculated as follows:

vj = tanh(Whij + b) (7)

βj =
exp(vj)∑
k exp(vk)

(8)

Here, the vector vpi is used as the representation of influence from ui to ûn.

3.3.2 Sequence-wise Influence Model
After we learn the pair-wise influence from each utterance to the simulated next utterance, we propose
a sequence-wise influence model to learn the influence from whole utterance sequence to next utterance
using attention mechanism. The sequence-wise attention model outputs a continuous vector vs ∈ Rd×1

recurrently by feeding the hidden representation vectors Hn = {hn1, hn2, ..., hnm} from ûn as inputs.
Specifically, vs is computed as a weighted sum of hnj (0 ≤ j ≤ m), namely

vs =
m∑
j

γjhnj (9)

where γj ∈ [0, 1] is the weight of hnj , and
∑

j γj = 1. For each piece of hidden state hj from the hidden
representation of the dialog representation d (Eq. 2), the scoring function is calculated as follows:

vj = tanh(Whj + b) (10)

γj =
exp(vj)∑
k exp(vk)

(11)

Here, the vector vs is used as the representation of the sequence-wise influence from the whole utter-
ance sequence d to ûn.

3.3.3 Integrating Pair-wise and Sequence-wise Influence
After we learn the representation {vp1 , v

p
2 , ..., v

p
n−1} from pair-wise influence model, and the representa-

tion vs from the sequence-wise influence model, we should integrate them into an uniform representation
for sentiment forecasting of next utterance.

We first concatenate the representation {vp1 , v
p
2 , ..., v

p
n−1} from pair-wise influence model into an uni-

form pair-wise representation vp:
vp = vp1 ⊕ v

p
1 ⊕ ...⊕ v

p
n−1 (12)

We then concatenate pair-wise representation vp with sequence-wise representation vs into an uniform
representation v:

v = vp ⊕ vs (13)

Here, we use v as the representation of simulated next utterance ûn by considering both pair-wise and
sequence-wise influence for forecasting polarity of un.

3.4 Sentiment Forecasting of Next Utterance
After we learn the representation v of simulated next utterance ûn with both pair-wise and sequence-wise
influence, we employ a multi-layer perceptron model to learn the polarity (positive, negative, or neutral)
of it. Since there are three sentiment categories, our task can be considered as a multi-label classification
task. Formally, giving an input vector v, a hidden layer is used to induce a set of high-level features as
follow:

HP = σ(W h
p v + bhp), (14)

HP is used as inputs to a softmax output layer:

PP = softmax(WpHP +BP ) (15)

Here, W h
p , bhp , Wp, and Bp are model parameters.
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3.5 Model Training
Given the utterance sequence {u1, u2, ..., un−1} in a dialog di and the pre-defined polarity yi of next
utterance ûn, our training objective is to minimize the cross-entropy loss over a set of training examples
(di, yi)|Ni=1, with a `2-regularization term,

J(θy) = −
N∑
i=1

K∑
j=1

yi log ŷi +
λ

2
||θy||2 (16)

where ŷi is the predicted label, θy is the set of model parameters and λ is a parameter for L2 regulariza-
tion.

4 Experimentation

4.1 Data and Setting
In all the experiments, the DailyDialog (Li et al., 2017) dataset is used to study the importance of sen-
timent forecasting task, and evaluate the performance of proposed NSF model. The dataset contains
13,118 multi-turn dialogs, the speaker turns are roughly 8, and the average tokens per utterance is about
15.

Since there are six kinds of emotion1 in the original dataset, and some emotions occupy less than 5%,
we thus merge all the emotions into three sentiment categories: positive(joy), negative(other emotions),
and neutral (no emotion).

To construct a sentiment rich dataset, we only select the dialogs which contain at least one emotion-
al utterance, we then get 7,395 dialogs. We randomly separate the dataset into training/test sets with
4,435/2,960 dialogs. For each dialog, we select top-4 utterances for our experiments: the top-3 utter-
ances are considered as existed utterances ({u1, u2, u3}), the last utterance is considered as unknown
utterance (un). Note that, we do not know the content of un, and we should forecast the sentiment of it
in experiments.

The vocabulary size is 9,888, the embedding size sets to 64, and the hidden size of all the model sets
to 32. Here, all the model parameters are optimized by AdaGrad (Duchi et al., 2011).

F1-measure (F1.) are used to evaluate the performance of proposed model in each sentiment category
(positive, and negative), and micro-average F1-measure is used to evaluate the overall performance.

4.2 Experimental Results
In this subsection, we present experiment results to illustrate the importance of sentiment forecasting
task, and show the effectiveness of proposed NSF model.

4.2.1 Comparison with Baselines
We first shows the results of proposed Neural Sentiment Forecasting (NSF) model with several strong
baselines, where

• LSTMi is a single utterance based sentiment forecasting model, it uses LSTM model to learn the
representation of ui (1 ≤ i ≤ 3) (Section 3.1), and then employs the representation of ui to fore-
casting sentiment of next utterance un.

• LSTMseq is a sequence based sentiment forecasting model, it employs a LSTM model to learn
dialog representation d from the existed utterance sequence {u1, u2, u3} (Eq. 2), and then employ
the dialog representation d to forecast sentiment of un.

• ICON takes one utterance with previous k utterances as input, and uses a GRU model for model-
ing inter-personal dependency in previous utterances and stores all history with one memory net-
work (Hazarika et al., 2018).

1There exist six categories of emotion in the dataset: joy, anger, disgust, fear, sadness, and surprise. Besides, many utterances
do not express any emotion (i.e., neutral).
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Table 1: Comparison with baselines.
Pos F1. Neg F1. Avg F1.

LSTM1 0.545 0.285 0.415
LSTM2 0.506 0.310 0.408
LSTM3 0.558 0.273 0.415
LSTMseq 0.563 0.342 0.453
ICON 0.529 0.293 0.411
DialogRNN 0.540 0.358 0.449
NSF 0.586 0.387 0.486

• DialogRNN employs recurrent neural networks to keep track of the individual states of utterances
and uses this information for sentiment classification in dialog (Majumder et al., 2018). It report
best results in dialog sentiment classification.

Note that, since ICON and DialogRNN in Table 1 were designed for dialog sentiment classification
instead of sentiment forecasting, we use u2 to simulate un for these two models2.

From the results in Table 1, we can find that the performance of sequence based LSTMseq is better than
utterance based LSTMi, it indicates that the importance of dialog sequence for forecasting sentiment,
and it also suggest us to consider the influence of whole dialog sequence for sentiment forecasting of
next utterance.

DialogRNN outperforms utterance based LSTMi, it also indicates the importance of dialog sequence
for sentiment classification.

The proposed NSF model outperforms all other baselines significantly, it shows that we should con-
sider both neural simulation and influence of dialog structure for forecasting sentiment of next utterance.

4.2.2 Comparison with Different Simulation Models
We then analyze the effectiveness of various neural simulation model, where

• UniSimi is a basic single utterance simulation model, which use ui to simulate un, and forecast
polarity of it.

• DualSimi,j is a dual utterances simulation model, which concatenates the representation of ui and
uj to simulate un, and forecast polarity of it.

• SeqSimd→i is a sequence based simulation model, it employs attention mechanism to learn the
influence from dialog representation d to ui for simulating un, and forecast polarity of it. It has
been discussed in Section 3.2.

From the results in Table 2, we can find that: UniSimi which only employs single utterance to simulate
next utterance cannot achieve a well performance.
DualSimi,j which employs two utterances to simulate next utterance outperforms the single utterance

based UniSimi, it indicates effectiveness of context for simulating next utterance.
The sequence attention based SeqSimd→i outperforms both single utterance and dual utterance based

models, and SeqSimd→2 outperforms all other simulation model. It indicates the effectiveness of dia-
log attention and the same speaker’s utterance (u2 and u4 are from the same speaker). Hence, we use
SeqSimd→2 as the proposed neural simulation model in this studies.

4.2.3 Comparison with Different Influence Models
After we learn the simulated next utterance ûn from SeqSimd→2 in dialog, we then analyze influence of
dialog sequence for next utterance with different neural influence model, where

2Since u2 and un(u4) are from the same speaker, there is high probability that they have the same polarity. It has been
proven in Table 5.
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Table 2: Comparison with different simulation model.
Pos F1. Neg F1. Avg F1.

UniSim1 0.545 0.285 0.415
UniSim2 0.506 0.310 0.408
UniSim3 0.558 0.273 0.415
DualSim1,2 0.533 0.349 0.441
DualSim1,3 0.554 0.317 0.435
DualSim2,3 0.545 0.330 0.437

SeqSimd→1 0.540 0.358 0.449
SeqSimd→2 0.544 0.366 0.455
SeqSimd→3 0.538 0.348 0.443

Table 3: Comparison with different influence model.
Pos F1. Neg F1. Avg F1.

UniIf1→n 0.533 0.349 0.441
UniIf2→n 0.554 0.317 0.435
UniIf3→n 0.545 0.330 0.437
PairIf 0.540 0.358 0.449
SeqIf 0.544 0.366 0.455
NSF 0.586 0.387 0.486

• UniIfi→n employs attention mechanism to learn the influence from utterance ui to next utterance
un.

• PairIf learns pair-wise influence towards un, by concatenating the representations from UniIfi→n,
it has been discussed in Section 3.3.1.

• SeqIf learns sequence-wise influence from utterance sequence to un, it has been discussed in Sec-
tion 3.3.2.

From the results in Table 3, we can find that UniIfi→n which only considers the influence from single
utterance ui cannot achieve a well performance.

The pair-wise influence model PairIf outperforms all the single utterance influence model, it indi-
cates the importance of pair-wise influence model for sentiment forecasting. In addition, sequence-wise
influence model SeqIf outperforms PairIf, it shows that sequence-wise influence model is much more
important than pair-wise model.

Finally, the proposed NSF model outperforms all other influence models significantly, it shows that we
should consider both pair-wise and sequence-wise influence for sentiment forecasting of next utterance.

5 Analysis and Discussion

In this section, we give some statistic and analysis to discuss our motivations and illustrate the importance
of propose sentiment forecasting task.

5.1 Sentiment Correlation between Existed Utterances and Next Utterance
We analyze the sentiment correlation between next utterance u4 and existed utterance ui (ui ∈
{u1, u2, u3}) in dialog. Table 5 shows conditional probability P (un|ui): given the polarity of ui, the
conditional probability of un (n = 4) with the same polarity of ui. From the table, we can find that
polarity of all existed utterances are correlated with un. In addition, we find that average conditional
probability of P (u4|u2) is much higher than other utterances, it may due to that u2 and u4 are from the
same speaker, the polarity of utterances from same speaker may not much change in most situations.
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Table 4: Outputs of LSTMseq and NSF.
Dialog LSTMseq NSF
A: Didn’t you event want to go to the cinema?
B: Not really. I watched televison for an hour.
A: What was on television last night?
B: Positive (Boxing. It was excellent.)

Neutral Positive

A: Can I help you?
B: Have got the last ONXIU magazine
A: Yes, but it’s checked out.
B: Negative (What a pity! I missed it again. )

Positive Negative

A: Why are you so quiet?
B: My girlfriend just broke up with me.
A: You must feel terrible now.
B: Negative (Yeah.)

Neutral Negative

Table 5: Pair-wise correlations between next and existed utterance.
u4

Positive Negative Average
u1 0.534 0.120 0.327
u2 0.557 0.366 0.462
u3 0.642 0.136 0.389

5.2 Case Study

We select three examples from the testing data to illustrate the effectiveness of proposed NSF model
compared with the LSTMseq model in Table 4.

In the first example, we can find that although next utterance is not related with the existed utterances,
the proposed NSF model still predicts correct polarity. It may due to that NSF can simulate next utterance
based on existed utterance sequence.

In the second example, the polarity of next utterance is related with third utterance in second example,
the proposed NSF predicts correct polarity by considering pair-wise influence between third utterance
and next utterance. Meanwhile, by considering sequence-wise influence from existed utterances, the
proposed NSF predicts correct polarity in the third examples.

In summary, NSF is much more effective by considering both neural simulation and influence of dialog
structure for forecasting sentiment of next utterance.

6 Conclusion

In this paper, we propose a novel but important task, called sentiment forecasting in dialog, which aims
to forecast the polarity of next utterance to come. There are two challenges in this task, one is that how to
simulate the next utterance for predicting its’ polarity, and another is how to learn the influence of existing
utterance sequence for forecasting next utterance’s polarity. In this paper, we propose a Neural Sentiment
Forecasting (NSF) model to address above challenges. In particular, a neural simulation model is used
to simulate the next utterance based on existed utterances sequence. In addition, a hierarchical influence
model is used to learn the influence of existing utterance by considering both pair-wise and sequence-
wise influence. Empirical studies illustrate the importance of our proposed sentiment forecasting task,
and show the effectiveness of our proposed NSF model over several strong baselines.
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