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Abstract

The goal of text simplification (TS) is to transform difficult text into a version that is easier to
understand and more broadly accessible to a wide variety of readers. In some domains, such as
healthcare, fully automated approaches cannot be used since information must be accurately pre-
served. Instead, semi-automated approaches can be used that assist a human writer in simplifying
text faster and at a higher quality. In this paper, we examine the application of autocomplete to
text simplification in the medical domain. We introduce a new parallel medical data set consisting
of aligned English Wikipedia with Simple English Wikipedia sentences and examine the applica-
tion of pretrained neural language models (PNLMs) on this dataset. We compare four PNLMs
(BERT, RoBERTa, XLNet, and GPT-2), and show how the additional context of the sentence to be
simplified can be incorporated to achieve better results (6.17% absolute improvement over the
best individual model). We also introduce an ensemble model that combines the four PNLMs and
outperforms the best individual model by 2.1%, resulting in an overall word prediction accuracy
of 64.52%.

1 Introduction

The goal of text simplification is to transform text into a variant that is more broadly accessible to a
wide variety of readers while preserving the content. While this has been accomplished using a range of
approaches (Shardlow, 2014), most text simplification research has focused on fully-automated approaches
(Xu et al., 2016; Zhang and Lapata, 2017; Nishihara et al., 2019). However, in some domains, such as
healthcare, using fully-automated text simplification is not appropriate since it is critical that the important
information is preserved fully during the simplification process. For example, Shardlow et al. (2019)
found that fully automated approaches omitted 30% of critical information when used to simplify clinical
texts. For these types of domains, instead of fully-automated approaches, interactive text simplification
tools are better suited to generate more efficient and higher quality simplifications (Kloehn et al., 2018).

Autocomplete tools suggest one or more words during text composition that could follow what has
been typed so far. They have been used in a range of applications including web queries (Cai et al., 2016),
database queries (Khoussainova et al., 2010), texting (Dunlop and Crossan, 2000), e-mail composition
(Chen et al., 2019), and interactive machine translation, where a user translating a foreign sentence is given
guidance as they type (Green et al., 2014). Our work is most similar to interactive machine translation.
Autocomplete tools can speed up the text simplification process and give full control over information
preservation to users, which is required in some domains, such as health and medical.

In this paper, we explore the application of pretrained neural language models (PNLMs) to the auto-
complete process for sentence-level medical text simplification. Specifically, given (a) a difficult sentence
a user is trying to simplify and (b) the simplification typed so far, the goal is to correctly suggest the
next simple word to follow what has been typed. Table 1 shows an example of a difficult sentence along
with a simplification that the user has partially typed. An autocomplete model predicts the next word
to assist in finishing the simplification, in this case a verb like “take”, which might be continued to a
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Difficult Lowered glucose levels result both in the reduced release of insulin from the beta
cells and in the reverse conversion of glycogen to glucose when glucose levels fall.

Typed This insulin tells the cells to

Table 1: An example of text simplification Autocomplete task. The user is simplifying the difficult
sentence on top and has typed the words on the bottom so far. The example is taken from a medical
parallel English Wikipedia sentence pair in Table 2.

Difficult Lowered glucose levels result both in the reduced release of insulin from the beta
cells and in the reverse conversion of glycogen to glucose when glucose levels fall.

Simple This insulin tells the cells to take up glucose from the blood.

Table 2: An example of sentence pair in Medical Wikipedia parallel corpus.

partial simplification of “take up glucose”. By suggesting the next word, the autocomplete models provide
appropriate guidance while giving full control to human experts in simplifying text. We explore this task
in the health and medical domain where information preservation is a necessity.

We make three main contributions:

1. We introduce a new parallel medical data set consisting of aligned English Wikipedia and Simple
Wikipedia sentences, which is extracted from the commonly used general Wikipedia parallel corpus
(Kauchak, 2013). The resulting medical corpus has 3.3k sentence pairs. This corpus is larger than
previously generated corpora (by over 1k sentence pairs) and has stricter quality control (Van den
Bercken et al., 2019). Our corpus requires a medical sentence to contain 4 or more medical words
and belong to medical titles as compared to the no title requirement and needing to contain only 1
medical word, as described in Van den Bercken et al. (2019).

2. We examine the use of PNLMs for the autocomplete task on sentence-level text simplification and
provide an initial analysis based on four recent models on this new medical corpus. In traditional
autocomplete tasks, only the text being typed is available. For text simplification, the additional
context of the difficult sentence is also available. We show how this additional information can be
integrated into the models to improve the quality of the suggestions made.

3. We introduce an ensemble model that combines the output of the four PNLMs and outperforms all of
the individual models. The ensemble approach is not application specific and may be used in other
domains where PNLMs have been employed.

2 Medical Parallel English Wikipedia Corpus Creation

We automatically extracted medical sentence pairs from the sentence-aligned English Wikipedia corpus
from Kauchak et al. (2013). Table 2 shows an example medical sentence pair. To identify the medical
sentence pairs, we first created a medical dictionary with 260k medical terms selected from the Unified
Medical Language System (UMLS) (Bodenreider, 2004) by selecting all UMLS terms that were associated
with the semantic types of: Disease or Syndrome, Clinical Drug, Diagnostic Procedure, and Therapeutic
or Preventive Procedure.

We extracted sentences from the English Wikipedia corpus based on the occurrence of terms in the
medical dictionary. Specifically, a sentence pair was identified as medical if both the title of the article
and the English Wikipedia sentence had 4 or more terms that matched the medical keywords. A term was
considered a match to the UMLS dictionary if it had a similarity score higher than 0.85 using QuickUMLS
(Soldaini and Goharian, 2016). We then reviewed the sentence pairs and removed all non-medical sentence
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pairs. The final medical parallel corpus has 3.3k aligned sentence pairs1.
Van den Bercken et al. (2019) also created a parallel medical corpus by filtering sentence pairs from

Wikipedia. Our corpus is significantly larger (45% larger; 2,267 pairs vs. 3,300 pairs) and uses a stricter
criteria for identifying sentences: they only required a single word match in the text itself (not the title)
and used a lower similarity threshold of 0.75 (vs. our approach of 0.85).

3 Approach

We had three goals for our analysis: understand the effect of incorporating the additional context of the
difficult sentence into autocomplete text simplification models, explore a new application for PNLMs, and
evaluate our new ensemble approach to the autocomplete text simplification.

3.1 Autocomplete Approach For Medical Text Simplification

We pose the autocomplete text simplification problem as a language modeling problem: given a difficult
sentence that a user is trying to simplify, d1d2...dm, and the simplification typed so far, s1s2...si, the
autocomplete task is to suggest word si+1. Table 1 gives an example of the autocomplete task. To evaluate
the models, we calculated how well the models predicted the next word in a test sentence, given the
previous words. A simple test sentence of length n, s1s2...sn, would result in n − 1 predictions, i.e.,
predict s2 given s1, predict s3 given s1s2, etc. For example, Table 2 shows a difficult sentence from
English Wikipedia and the corresponding simplification from the medical Simple English Wikipedia.
Given this test example, we generate 12 prediction tasks, one for each word in the simple sentence after
the first word. Table 3 shows these 12 test prediction tasks.

3.2 Increasing Information Through Incorporation of Additional Context

Unlike other autocomplete tasks, for text simplification, the difficult sentence provides very explicit
guidance about what words and information should be included as the user types. As a baseline, we
compare the models without the context of this additional information, i.e., we predict word si+1 given
only the simplification typed so far, s1s2...si. We take a straightforward approach to incorporate the
context of the difficult sentence: we concatenate the difficult sentence in front of a simplification typed
so far, i.e., predict si+1 given d1d2...dm.s1s2...si. This has the advantage of incorporating the difficult
sentence and biasing the predictions towards those found in the encoded context from difficult sentences,
but is still model-agnostic, allowing us to apply it to all the different PNLMs without modifying the
underlying architecture.

3.3 Transformer-based Language Models

We examined four PNLMs based on the Transformer network (Vaswani et al., 2017): BERT (Devlin et al.,
2018), RoBERTa (Liu et al., 2019), XLNet (Yang et al., 2019), and GPT-2 (Radford et al., 2019). For
each of the models, we examine versions that only utilize the text typed so far, denoted “No Context”, as
well as “context-aware” variants that utilize the difficult sentence. We fine-tuned all four models on the
160k sentence pair general parallel English Wikipedia (Kauchak, 2013) (excluding the development and
testing data) and then further fine-tuned them on the separate medical training set described in section 2.
Note that none of the test sentences were in a dataset used for fine-tuning.

BERT: Bidirectional Encoder Representations from Transformers (Devlin et al., 2018) is a method
for learning language representations using bidirectional training. BERT has been shown to produce
state-of-the-art results in a wide range of generation and classification applications. We use the base
original BERT2 model pre-trained on the BooksCorpus (Zhu et al., 2015) and English Wikipedia.

RoBERTa: A Robustly Optimized BERT Pretraining Approach (Liu et al., 2019). The RoBERTa uses
the same model architecture as BERT. However, the differences between RoBERTa and BERT are that

1https://github.com/vanh17/MedTextSimplifier/tree/master/data_processing/data
2https://github.com/huggingface/bert/
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Difficult sentence Lowered glucose levels result both in the reduced release of insulin
from the betacells and in the reverse conversion of glycogen to
glucose when glucose levels fall.

Prediction Task Simplification typed so far Predict

1 This insulin
2 This insulin tells
3 This insulin tells the
4 This insulin tells the cells
5 This insulin tells the cells to
6 This insulin tells the cells to take
7 This insulin tells the cells to take up
8 This insulin tells the cells to take up glucose
9 This insulin tells the cells to take up glucose from
10 This insulin tells the cells to take up glucose from the
11 This insulin tells the cells to take up glucose from the blood
12 This insulin tells the cells to take up glucose from the blood .

Table 3: The resulting prediction tasks that are generated from the example in Table 2.

RoBERTa does not use Next Sentence Prediction during pre-training and RoBERTa uses larger mini-batch
size. We used the publicly released base RoBERTa3 with 125M parameters model.

XLNet: Generalized Auto-regressive Pretraining Method (Yang et al., 2019). Like BERT, XLNet
benefits from bidirectional contexts. However, XLNet does not suffer limitations of BERT because of its
auto-regressive formulation. In this work, we used publicly available base English XLNet4 with 110M
parameters model.

GPT-2: Generative Pretrained Transformer 2 (Radford et al., 2019). Like BERT, GPT-2 is also based
on the Transformer network, however, GPT-2 uses unidirectional left-to-right pre-training process. We
use the publicly released GPT-25 model, which has 117M parameters and is trained on web text.

3.4 Ensemble Models
Each of the models above utilizes different network variations and was pretrained on different datasets,
and therefore they do not always make the same predictions. Ensemble approaches combine the output of
different systems to try and leverage these differences to create a single model that outperforms any of the
individual models. We examined three ensemble approaches that combine the output of the four models.

Majority Vote: As a baseline ensemble approach, we examined a simple majority vote on what the
next word should be. We take the top 5 suggestions from each of the models and do a majority count on
the pool of combined suggestions. The output of the model is the suggestion with highest count. If there
is a tie, we randomly select one of the top suggestions. We picked the top 5 suggestions since this was the
cutoff where the models tended to peak on the development data (for example, see the accuracy@N as
shown in Table 7. Having more than 5 suggestions did not improve performance much but slowed the
computation.

4-Class Classification (4CC): The ensemble problem can be viewed as a classification problem where
the goal is to predict which system output should be used given a difficult sentence and the words typed
so far, i.e., the autocomplete example. We posed this as a supervised classification problem. Given an
autocomplete text simplification example, we can generate training data for the classifier by comparing

3https://github.com/huggingface/roberta
4https://github.com/huggingface/xlnet
5https://github.com/huggingface/gpt2
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Prediction Task Class

(Difficult sentence). This (MASK) RoBERTa
(Difficult sentence). This insulin (MASK) BERT
(Difficult sentence). This insulin tells (MASK) XLNet

Table 4: An example of training data for the 4CC model. Class can be one of the four option: BERT,
RoBERTa, XLNet, GPT-2.

the output of each system to the correct answer. If a system does get the example correct, then we include
an example with that system as the label. Table 4 shows three such examples, where RoBERTa correctly
predicted the first example, BERT the second, and XLNet the third. If multiple systems get the example
right, we then randomly assign the label to one of the systems.

We train a neural text classifier implemented by huggingface6 with this training set to the PNLMs given
the next-word prediction task. To make use of the models’ confidence on top of the results from model
selection, we designed a scoring system for output selection as follows:

Score(w,X) = α ∗ P (w|X) + θ ∗ I(X,S)

where P (w|X) is model X’s confidence on predicted word w; I(X,S) is an identity function, which
returns 1 if X = S and 0 otherwise; S is the predicted model from model selector; and α and θ are
scoring parameters. We use 0.5 for both α and θ. At testing time, we pick the highest score and output the
word w, given a prediction task.

Autocomplete for Medical Text Simplification (AutoMeTS): RoBERTa performed significantly bet-
ter than the other three individual models at the simplification autocomplete task. As a result, there was a
strong bias toward RoBERTa in the training data for the 4CC ensemble model. To mitigate this effect,
we also developed an ensemble approach based on a multi-label classifier for model selector, which we
denote the AutoMeTS ensemble model. This choice of model selector, to our knowledge, is novel to
transformer-based ensemble models. For this choice of classifier, each prediction task is given a sequence
of 4 binary labels. Each label represents the correctness of each of the individual PNLMs, with a 0
representing an incorrect prediction on the task and a 1 representing a correct prediction. Table 5 shows an
example of this dataset with the labels in order “RoBERTa BERT XLNet GPT-2”. For the first example,
RoBERTa, XNLET, and GPT-2 correctly predicted the next word, while BERT did not.

We trained a neural multi-label classifier implemented by huggingface on this training dataset. To make
use of the models’ confidence on top of the results from model selection, we designed a scoring system
for output selection as follows:

Score(w,X) = β ∗ P (w|X) + σ ∗ S(X,Ls)

where P (w|X) is model X’s confidence on predicted word w; S(X,Ls) is a function, which returns 0.25
if model X is in Ls and 0 otherwise; Ls is the predicted sequence of labels from the model selector; and
β and σ are scoring parameters. We use 0.5 for both β and σ. At testing time, we output the word w with
the highest score, given a prediction task.

4 Experimental Setup

We compare the performance of the models on the medical autocomplete text simplification task. We
used our medical parallel English Wikipedia corpus with 70% of the sentence pairs for training, 15% for
development, and 15% for testing. We fine-tuned individual PNLMs using huggingface7 with a batch-size
of 8, 8 epochs, and a learning rate of 5e−5. Early stopping was used based on the second time a decrease
in the accuracy was seen.

6https://github.com/huggingface/transformers
7https://github.com/huggingface/
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Prediction Task Sequence of Labels

(Difficult sentence). This (MASK) 1 0 1 1
(Difficult sentence). This insulin (MASK) 0 1 0 0
(Difficult sentence). This insulin tells (MASK) 1 1 1 1

Table 5: An example of training data for the AutoMeTS model. For a prediction task, a sequence of 4
labels is give in the order ”RoBERTa BERT XLNet GPT-2”. The value of 1 means the model correctly
predicted the right word, and 0 otherwise.

Figure 1: Accuracy for the context-aware models based on the length of the difficult sentences: very short
(≤ 5 tokens), short (6− 15), medium (16− 19), and long (≥ 20).

We used two metrics to evaluate the quality of the approaches. First, we used standard accuracy, where
a prediction is counted correct if it matches the test prediction word. Accuracy is pessimistic in that
the predicted word must match exactly the word seen in the simple sentence, and as such it does not
account for other possible words, such as synonyms, that could be correctly used in the context. Since the
parallel English Wikipedia corpus does not offer multiple simplified versions for a given difficult sentence,
accuracy is the best metric that considers automated scoring, simplification quality, and information
preservation. Accuracy-based metrics can help offset an expensive manual evaluation while providing
the best approximation of how the autocomplete systems work. We do not use BLEU (Papineni et al.,
2002) and SARI (Xu et al., 2016) scores, which are widely used in text simplification domain, because the
two metrics are specifically designed for fully-automated models that predict an entire sentence at a time.
For autocomplete, the models only predict a single word at a time and then, regardless of whether the
answer is correct or not, use the additional context of the word that the user typed next to make the next
prediction.

Autocomplete models can suggest just the next word, or they can be used to suggest a list of alternative
words that the user could select from (since the models are probabilistic they can return a ranked list of
suggestions). To evaluate this use case, and to better understand what words the models are predicting, we
also evaluated the models using accuracy@N. Accuracy@N counts a model as correct for an example as
long as it suggests the correct word within the first N suggestions.
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Model No Context Context-Aware

Single PNLMs

RoBERTa 56.23 62.40
BERT 50.43 53.28
XLNet 45.70 46.20
GPT-2 23.2 49.00

Ensemble Models

Majority Vote 39.75 48.25
4CC 52.27 59.32
AutoMeTS 57.89 64.52
Upper bound 60.22 66.44

Table 6: Accuracy of pretrained neural language models (PNLMs), both with and without the context of
the difficult sentence on the medical parallel English Wikipedia corpus.

RoBERTa BERT XLNet GPT-2

accuracy@1 62.40 53.28 46.20 49.00
accuracy@2 67.20 54.50 46.90 49.44
accuracy@3 70.00 56.20 49.20 52.57
accuracy@4 72.10 58.00 51.30 54.32
accuracy@5 73.20 59.40 53.50 56.12

Table 7: Accuracy@N of the RoBERTa, BERT, XLNet, and GPT-2 with context on next word prediction.

5 Results and Discussion

We first analyze the results of the individual PNLMs on the medical text simplification autocompletion
task and then explore the ensemble approaches. We also include a number of post-hoc analyses to better
understand what the different models are doing and limitations of the models.

5.1 Individual Language Models

Accuracy Table 6 shows the results for the four different variants (RoBERTa, BERT, XLNet, and GPT-2
with and without context). Even without any context, many of the models get every other word correct
(accuracy of around 50%). With the additional context of the difficult sentence, all models improve.
GPT-2 improves drastically (more than doubling the accuracy) and RoBERTa also achieves a reasonable
improvement of 6% absolute. Both with and without context, RoBERTa is the best performing model
achieving significantly higher results than the other models

Accuracy@N Table 7 shows the accuracy@N from PNLMs on next word prediction. By allowing the
autocomplete system user the option to pick from a list of options, the correct word is much more likely
to be available. Even just showing three options, results in large improvements, e.g., 7.5% absolute for
RoBERTa. When five options are available, increases range from 6–10.8%.

Impact of the difficult sentence length To better understand the models, we compared the average
performance of the models based on the length of the sentence that was being simplified. We divided the
test sentence into four different groups based on length: very short (≤5 tokens), short (6− 15 tokens),
medium (16− 19 tokens), and long (≥20 tokens). Figure 1 shows the test accuracy of the context-aware
models broken down into these 4 different groups. RoBERTa, BERT, and XLNet are fairly consistent
regardless of the difficult sentence lengths; only for long sentences does the performance drop. GPT-2
performs poorly on short sentences, but well for other lengths. We hypothesize that the training data for
GPT-2 (web text) may require more context for this more technical task.
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Figure 2: Accuracy for the four context-aware models based on the number of words typed so far.

Impact of the number of words typed We also analyzed the average performance of the models based
on how many of the words of the simplified sentence had been typed so far, i.e., the length of s1s2...si.
Figure 2 shows the performance accuracy of the models based on how many words of the simplification
the model has access to. Early on, when the sentence is first being constructed, all models perform poorly.
As more words are typed, the accuracy of all models increases. GPT-2 performs the best early on, but
then levels off after about 7 words. Both BERT and RoBERTa continue to improve as more context is
added, which may partially explain their better performance overall.

5.2 Ensemble Models

Although RoBERTa performs the best overall, as Figures 1 and 2 show, different models perform better in
different scenarios. The ensemble models try and leverage these differences to generate a better overall
model.

As shown in Table 6, the majority vote ensemble model does not perform better than the best individual
PNLM. The 4CC does outperform the majority vote approach by 11.07% and does perform better than
three of the four PLNMs, but it still fails to beat RoBERTa. AutoMeTS, by viewing the problem as a
multi-label problem, is able to avoid some of the biases in the training data that 4CC has, resulting in an
absolute improvement of 2.1% over the best individual model (RoBERTa).

To understand the performance differences of the ensemble models, Table 8 shows the percentage that
each of the four PNLMs was used for each of the ensemble approaches. The problem with the majority
vote is that it tends to utilize all of the systems, regardless of their quality. For example, it shows a
high percentage of XLNet, even though its performance was the worst. Because RoBERTa is the best
performing model, the 4CC approach had a very strong bias towards RoBERTa. The multi-label selector
reduces the bias towards using RoBERTa (a 11.25% decrease in the appearance of RoBERTa) and is able
to leverage predicions from the other model when appropriate.

To understand the limits of an ensemble approach, we also calculated the upper bound that the ensemble
approach could achieve. Specifically, as long as at least one model among the four PNLMs correctly
predicts the next word, we mark it as correct for the upper bound. This means that no other possible
combination of the four PNLMs can perform better. Here this upper bound is 66.44% (Table 6), which is
about a 2% improvement over our ensemble approach; there is a bit of room for improvement, but also
better language modeling techniques also need to be explored.



1432

Figure 3: Accuracy for the RoBERTa, AutoMeTS, and upper bound models based on the number of
words typed so far.

Majority Vote 4CC AutoMeTS

RoBERTa 47.29% 71.00% 59.75%
BERT 20.25% 12.45% 18.09%
XLNet 15.41% 5.72% 7.06%
GPT-2 17.05% 10.83% 15.10%

Table 8: The appearance frequency of PNLMs in Majority Vote, 4CC, AutoMeTS ensemble models.

Figure 3 shows the accuracy for RoBERTa, AutoMeTS, and the upper bound based on size of the
context, i.e., words typed so far. For small context, the ensemble approach performs much better than
RoBERTa. This likely can be attributed to selecting one of the other models that performs better for small
context, e.g., GPT-2. As the context size increases, however, RoBERTa and the ensemble model perform
similarly. The upper bound is consistently above the ensemble approach across all context sizes.

6 Conclusions

In this paper, we introduced a new medical parallel English Wikipedia corpus for text simplification,
which contains 3.3K medical sentence pairs. Further, we proposed a new autocomplete application for
PNLMs for medical text simplification. Such autocomplete models can assist users in simplifying text with
improved efficiency and higher quality results in domains where information preservation is especially
critical, such as healthcare and medicine, and where fully-automated approaches are not appropriate. We
examined four recent PNLMs: BERT, RoBERTa, XLNet, and GPT-2, and showed how the additional
context of the sentences being simplified could be incorporated into the autocomplete simplification
process. Further, we introduced AutoMeTS, an ensemble method that combines the advantages of each of
the different PNLMs. The AutoMeTS model outperforms the best individual model, RoBERTa, by 2.1%.
Longer term, we envision that this new application could lead to other interesting model adaptations and
advance text simplification in medical domains.
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