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Abstract

Embedding-based entity alignment has been widely investigated in recent years, but most pro-
posed methods still rely on an ideal supervised learning setting with a large number of unbiased
seed mappings for training and validation, which significantly limits their usage. In this study, we
evaluate those state-of-the-art methods in an industrial context, where the impact of seed map-
pings with different sizes and different biases is explored. Besides the popular benchmarks from
DBpedia and Wikidata, we contribute and evaluate a new industrial benchmark that is extracted
from two heterogeneous knowledge graphs (KGs) under deployment for medical applications.
The experimental results enable the analysis of the advantages and disadvantages of these align-
ment methods and the further discussion of suitable strategies for their industrial deployment.

1 Introduction

Knowledge graphs (KGs), such as DBpedia (Auer et al., 2007), Wikidata (Vrandečić and Krötzsch, 2014)
and YAGO (Suchanek et al., 2007) are playing an increasingly important role in various applications such
as question answering and search engines. The construction of KGs usually includes several components,
such as Named Entity Recognition (NER) (Li et al., 2018), Relation Extraction (RE) (Zhang et al.,
2019a), and Knowledge Correction (Chen et al., 2020). However, the content of an individual KG is
often incomplete, leading to a limited knowledge coverage especially in supporting applications of a
specific domain (Färber et al., 2018; Demartini, 2019). One widely adopted solution is to merge multiple
KGs (e.g., an enterprise KG with fine-grained knowledge of a specific domain and a general-purpose
KG with an extensive coverage) with the assistance of an alignment system which discovers cross-KG
mappings of entities, relations, and classes (Otero-Cerdeira et al., 2015; Yan et al., 2016).

Embedding-based entity alignment has recently attracted more attention due to the popularity of KGs
with big data (i.e. a large number of facts) such as Wikidata. Traditional alignment systems such as
PARIS (Suchanek et al., 2011) and LogMap (Jiménez-Ruiz and Grau, 2011), which usually reply on
lexical matching and semantic reasoning (e.g., for checking the violation of relation domain and range),
are believed to be weak in utilizing the contextual semantics especially the graph structure of such large
KGs. To address this problem, some novel embedding-based methods have been proposed with the
employment of different KG embedding methods such as TransE (Bordes et al., 2013) and Graph Neural
Networks (GNNs) (Scarselli et al., 2008) as well as some algorithms from active learning (Berrendorf et
al., 2020), multi-view learning (Zhang et al., 2019b) and so forth.

We find all these embedding-based entity alignment methods rely upon seed mappings for supervision
or semi-supervision in training. They are usually evaluated by benchmarks extracted from DBpedia,
Wikidata and YAGO, all of which are constructed from the same source, namely Wikipedia. These
methods typically build their models with 30% (or even higher) of all the ground-truth mappings, and
the training and validation sets are randomly extracted, sharing the same distribution as the test set.
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Figure 1: Distribution of mappings of two sampled medical KGs. The horizontal axis denotes the average
number of attributes and the vertical axis denotes the edit distance between entity names.

In industrial applications, however, such seed mappings require not only expertise but also much hu-
man labour for annotation, especially when the two large KGs come from totally different sources. Even
though a small number of seed mappings can be annotated, they are usually biased in comparison with
the remaining for prediction with respect to entity name, attribute, graph structure and so on. Figure 1
shows the distribution of all the mappings of two sampled medical KGs from Tencent Technology (cf.
Section 3.1 for more details), with two dimensions – the similarity between names of mapping enti-
ties and the average attribute number of mapping entities. When we directly invited experts or utilized
downstream applications to annotate mappings, the annotated mappings, which could act as the seed
mappings for training, usually lie in the bottom right area (seen in the red block in Figure 1) with high
name similarity and large attribute number. Thus, we believe that the seed mappings should have the
following characteristics to make the evaluation of these supervised methods more practical. Firstly, the
seed mappings should take a small proportion of all the mappings, such as 3% that is far smaller than
previous experimental settings. Secondly, the seed mappings should be biased towards the remaining
mappings with respect to the entity name similarity, the average attribute number, or both. Such biases
are ignored in the current evaluation.

In this work, we systematically evaluate four state-of-the-art embedding-based KG alignment meth-
ods in an industrial context. The experiment is conducted with one open benchmark from DBpedia and
Wikidata, one industry benchmark from two enterprise medical KGs with heterogeneous contents, and a
series of seed mappings with different sizes, name biases and attribute biases. The performance analysis
considers all the testing mappings as well as different splits of them for fine-grained observations. These
methods are also compared with the traditional system PARIS. To the best of our knowledge, this is the
first work to evaluate and analyse the embedding-based entity alignment methods from an industry per-
spective. We find that these methods heavily rely on an ideal supervised learning setting and suffer from a
dramatic performance drop when being tested in an industrial context. Based on these results, we can fur-
ther discuss the possibility to deploy them for real-world applications as well as suitable sampling strate-
gies. The new benchmark and seed mappings can also benefit the research community for future studies,
which are publicly available at https://github.com/ZihengZZH/industry-eval-EA.

2 Preliminaries and Related Work

2.1 Embedding-based Entity Alignment
Most of the existing embedding based entity alignment methods conform to the following three-step
paradigm: (i) embedding the entities into a vector space by either a translation based method such as
TransE (Bordes et al., 2013) or Graph Neural Networks (GNNs) (Scarselli et al., 2008) which recursively
aggregate the embeddings of the neighbouring entities and relations; (ii) mapping the entity embeddings
in the space of one KG to the space of another KG by learning a transformation matrix, sharing embed-
dings of the aligned entities, or swapping the aligned entities in the associated triples; (iii) searching an
entity’s counterpart in another KG by calculating the distance in the embedding space using metrics such
as the cosine similarity. It is worth noting that the role of the seed mappings mainly lies in the second
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step, aligning the embeddings of two KGs.
Specifically, we evaluate four methods, namely BootEA (Sun et al., 2018), MultiKE (Zhang et al.,

2019b), RDGCN (Wu et al., 2019) and RSN4EA (Guo et al., 2018). On the one hand, they have
achieved the state-of-the-art performance in the ideal supervised learning setting, according to their own
evaluation and the benchmarking study (Sun et al., 2020); on the other hand, they are representative to
different techniques that are widely used in the literature. The four methods are introduced as follows.

BootEA is a semi-supervised approach, which adopts translation-based models for embedding and
iteratively trains a classifier by bootstrapping. In each iteration, new likely mappings are labelled by the
classifier and those causing no conflict are added for training in the following iteration.

MultiKE utilizes multi-view learning to encode different semantics into the prediction model. Specif-
ically, three views are developed for entity names, entity attributes, and the graph structure respectively.

RDGCN applies a GCN variant, Dual-Primal GCN (Monti et al., 2018) to utilize the relation informa-
tion in KG embedding. It can better utilize the graph structure than those translation-based embedding
methods, especially in dealing with the triangular structures.

RSN4EA firstly generates biased random walks (long paths) of both KGs as sequences and then learns
the embeddings by a sequential model named Recurrent Skipping Network. The seed mappings here are
used to generate cross-KG walks, thus exploring correlations between cross-KG entities.

2.2 Seed Mappings
As far as we know, the current embedding-based entity alignment methods mostly rely on the seed map-
pings, whose roles are introduces in Section 2.1, for supervised or semi-supervised learning. Specially,
we can consider some heuristic rules with, for example, string and attribute matching to generate the
seed mappings, as done by the method IMUSE (He et al., 2019), but the impact of the seed mappings is
similar and the study of such impact also benefit the distant supervision methods.

In addition, although some semi-supervised approaches such as BootEA (Sun et al., 2018) and SEA
(Pei et al., 2019) are less dependent on the seed mappings, their performance, when trained on a small
set of seed mappings, may vary from data to data and be impacted by the bias of the seed mappings.

In the own evaluation of these methods and the recent benchmark study (Sun et al., 2020), 20% and
10% of all the ground truth mappings are used for training and validation respectively, and more im-
portantly, they are randomly selected, thus maintaining the same distribution as the testing mappings.
This violates the real-world scenarios in the industry, where annotating seed mappings is costly and the
annotated ones are usually biased, as discussed in Section 1. Actually, there are relatively few studies
that investigate the seed mappings and those investigated only consider the proportion of the seeding
mappings. In Sun et al. (2018) and Wu et al. (2019), the proposed methods are evaluated with the pro-
portion of the seed mapping for training varying from 10% to 40%. However, the minimum proportion
still leads to a very large number (e.g., 1.5K) of seed mappings in aligning two big KGs.

2.3 Benchmarks
The current benchmarks used to evaluate the embedding-based methods are typically extracted from
DBpedia, Wikidata, and YAGO. They can be divided into two categories. The first includes those for
cross-lingual entity alignment such as DBP15K (Sun et al., 2017) and WK3l60k (Chen et al., 2018),
both of which support the alignment between DBpedia entities in English and DBpedia entities in other
languages, such as Chinese or French. These benchmarks usually only support within KG alignment. The
second includes those for cross-KG entity alignment such as DWY15K (Guo et al., 2018) and DWY100K
(Sun et al., 2018), both of which are for the alignment between DBpedia and Wikidata/YAGO.

As discussed in Sun et al. (2020), entities in these aforementioned benchmarks have a significant bias
in comparison with normal entities in the original KGs; for example, those DBpedia entities in WK3l60k
have an average connection degrees of 22.77 while that of all DBpedia entities is 6.93. Thus, these
benchmarks are not representative to DBpedia, Wikidata, and YAGO. To address this issue, Sun et al.
(2020) proposed a new iterative degree-based sampling algorithm to extract new benchmarks for both
cross-lingual entity alignment within DBpedia and cross-KG entity alignment between DBpedia and
Wikidata/YAGO. Although the new benchmarks are more representative w.r.t. the graph structure, the
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entity labels defined by rdfs:label are removed, which include important name information, which makes
them less representative to real-world alignment contexts. More importantly, since DBpedia, Wikidata,
and YAGO are constructed from the same source Wikipedia, the entities for alignment often have similar
names, attributes, or graph structures. These benchmarks are therefore not applicable in the real-world
alignment which in contrast, aims at KGs from different sources to complement each other. To make an
industry evaluation, we constructed a new benchmark from two industrial KGs (cf. Section 3.1).

It is worth noting that Ontology Alignment Evaluation Initiatives1 has been organizing a KG track
since 2018 (Hertling and Paulheim, 2020). The benchmarks used are those KGs extracted from several
different Wikis from Fandom;2 for example, starwars-swg is a benchmark with mappings between two
KGs from Star Wars Wiki and Star Wars Galaxies Wiki. Multiple benchmarks are adopted, but their
scales are limited; for example, 4 out of 5 used in 2019 have less than 2K entity mappings. As the two
KGs of a benchmark are about two hubs of one concrete topic (such as the movie and the game of Star
Wars), the entity name has little ambiguity and becomes a superior indicator for alignment. Thus they
are not suitable industrial benchmarks for evaluating the embedding-based entity alignment methods.

3 Data Generation

3.1 Industrial Benchmark

To evaluate the embedding-based entity alignment methods in an industrial context as discussed above,
we first extract a benchmark from two real-world medical KGs for alignment. One KG is built upon
multiple authoritative medical resources, covering fine-grained knowledge about illness, symptoms,
medicine, etc. It is deployed to support applications such as question answering and medical assistants in
our company. However, some of its entities have incomplete information with many important attributes
missing, which limits its usability. We extract around 10K such entities according to the feedback from
downstream applications. They are then aligned with another KG to improve the information complete-
ness. That KG is extracted from the information boxes of Baidu Baike3, the largest Chinese encyclopedia,
via NLP techniques (such as NER and RE) as well as some handcrafted engineering work. We refer to
crowdsourcing for annotating the mappings, where heuristic rules, based on labels and synonyms, and a
friendly interface for supporting information check are used for assistance. Finally, we obtain 9, 162 one-
to-one entity mappings, based on which one sub-KG is extracted from one original KG. Specifically, the
sub-KG includes triples that are composed of entities associated with these mappings. The two sub-KGs
are named as MED and BBK, and the new benchmark is named as MED-BBK-9K.

Table 1: Statistics of MED-BBK-9K and D-W-15K.

Benchmark KGs #Entities Relation Attribute
#Relations #Triples Degree #Attributes #Triples Degree

MED-BBK-9K MED 9,162 32 158,357 34.04 19 11,467 1.24
BBK 9,162 20 50,307 10.96 21 44,987 4.91

D-W-15K DBpedia 15,000 167 73,983 8.55 175 66,813 4.40
Wikidata 15,000 121 83,365 10.31 457 175,686 11.59

More details of MED-BBK-9K and another benchmark D-W-15K, which is extracted by the iterative
degree-based sampling method under the setting of V2 (Sun et al., 2020), are shown in Table 1, where #
denotes the number and degree is the rate between the triple number and the entity number. Statistics of
relation triples and attribute triples are separately presented in Table 1. Note that a relation is equivalent to
an object property connecting two entities, while an attribute is equivalent to a data property associating
an entity with a value of some data type. Two entity mapping examples of MED-BBK-9K are depicted in
Figure 2, where the green ellipses indicate the aligned entities across KGs, the white ellipses and the solid
arrows indicate their relation triples4, and the red rectangles and the dash arrows indicate the attributes

1http://oaei.ontologymatching.org/
2http://www.fandom.com/
3https://baike.baidu.com/
4label here indicates a specific relation. Please do not be confused with rdfs:label of the W3C standard.
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Figure 2: Two mapping examples from MED-BBK-9K with English translations.

which include normal values, sentence descriptions, and noisy values. Through the statistics and the
examples, we can conclude that KGs in MED-BBK-9K are quite different from KGs in D-W-15K, with
a higher relation degree, less attributes, higher heterogeneity, etc.

3.2 Biased Seed Mappings
Besides the industrial benchmark, we also develop a new approach to extract biased seed mappings
for the industrial context. We first introduce two variables, sname and nattr, in which sname is the
normalized Levenshtein Distance – an edit distance metric (Navarro, 2001) in [0, 1] for the name strings
of entities of each mapping, and nattr is the average number of attributes of entities of each mapping. For
Wikidata entities in D-W-15K, we use the attribute values of P373 and P1476 as the entity names, while
for DBpedia entities we use the entity name in the URI. Note when one or both entities in one mapping
has multiple names, we adopt the two names leading to the highest similarity i.e., the lowest sname.
Meanwhile, all the names are pre-processed before calculating sname: dash, underline and backslash are
replaced by the white space, punctuation marks are removed, letters are transformed into lowercase.

With sname and nattr calculated, we divide all the mappings into three different splits according to
either the name similarity or the attribute number. For the name similarity, the mappings are divided into
“same” (sname=1.0), “close” (sname < 1.0) and “different” (sname is NA, i.e., no valid entity name) for
both MED-BBK-9K and D-W-15K. From the attribute number, the mappings are divided into “large”
(nattr ≥ k1), “medium” (k2 ≤ nattr < k1) and “small” (nattr < k2), where (k1, k2) are set to (5, 2) for
MED-BBK-9K and set to (10, 4) for D-W-15K.

We further develop an iterative algorithm to extract the seed mappings with name bias and attribute
bias. Its steps are shown below, with two inputs, namely the set of all the mappingsMall and the size of
seed mappings Nseed, and one output, namely the set of biased seed mappingsMseed.

(1) Initialize the biased seed mapping setMseed.
(2) Assign each mapping inMall a score: z = zname + zattr, where zname is set to 4, 3 and 1 if the

mapping belongs to “same”, “close” and “different” respectively, and zattr is set to 4, 3 and 1 if the
mapping belongs to “large”, “medium” and “small” respectively. Note all the mappings inMall are
assigned a score of 8, 7, 6, 5, 4, or 2.

(3) Move the mapping with the highest score in Mall to Mseed. Randomly select one if multiple
mappings inMall have the highest score.

(4) Check whether the size of Mseed has been equal to or larger than Nseed. If yes, return Mseed;
otherwise, go to Step (3).

With the above procedure, we can also obtain seed mappings that are name biased alone by setting
z = zname, and seed mappings that are attribute biased alone by setting z = zattr. Note the seed
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mappingsMseed include both training mappings and validation mappings. In our experiment, the former
occupies two thirds of the seed mappings while the latter occupies one third.

4 Evaluation

4.1 Experimental Setting

We first conduct the overall evaluation (cf. Section 4.2). Specifically, the methods BootEA, MultiKE,
RDGCN, and RSN4EA are tested under (i) an industrial context where the seed mappings are both
name biased and attribute biased, and the rate of training (resp. validation) mappings is 2% (resp. 1%),
and (ii) an ideal context where the seed mappings are randomly selected without bias, and the rate of
training (resp. validating) mappings is 20% (resp. 10%). We then conduct ablation studies where three
impacts of seed mappings are independently analysed, including size, name bias, and attribute bias.

In both overall evaluation and ablation studies, we calculate metrics Hits@1, Hits@5, and mean re-
ciprocal rank (MRR) with all the testing mappings. For each testing mapping, the candidate entities (i.e.,
all the entities in the target KG) are ranked according to their predicted scores; Hits@1 (resp. Hits@5)
is the ratio of testing mappings whose ground truths are ranked in the top 1 (resp. 5) entities; MRR is
the Mean Reciprocal Rank of the ground truth entity. Meanwhile, to further analyse the impact of the
seed mappings on different kinds of testing mappings, we divide the testing mappings into two three-fold
splits – “same”, “close” and “different” from the name biased aspect, and “small”, “medium” and “large”
from the attribute biased aspect.

We adopt the implementation of BootEA, MultiKE, RDGCN, and RSN4EA in OpenEA, while their
hyperparameters are adjusted with the validation set. Specifically, the batch size is set to 5000, the early
stopping criterion is set to when Hits@1 begins to drop on the validation set (checked for every 10
epochs), the maximum epoch number is set to 2000. As MultiKE and RDGCN utilize literals, the word
embeddings are produced using a fastText model pre-trained on Wikipedia 2017, UMBC webbase corpus
and statmt.org news dataset5. To run them on MED-BBK-9K, the Chinese word embeddings are obtained
via a medical-specific BERT model pre-trained on big medical corpora from Tencent Technology6.

We finally compare these embedding-based methods with a state-of-the-art conventional system
named PARIS (v0.3)7, which is based on lexical matching and iterative calculation of relation mappings,
class mappings and entity mappings with their correlations (logic consistency) considered (Suchanek et
al., 2011). We adopt the default hyperparameters to PARIS. Note that PARIS requires no seed mappings
for supervision. As PARIS does not rank all the candidate entities, we use Precision, Recall, and F1-
score as the evaluation metrics. For the embedding-based methods, Hits@1 in our one-to-one mapping
evaluation is equivalent to Precision, Recall, and F1-score.

4.2 Overall Results

Table 2 presents the results of those embedding-based methods on both D-W-15K and MED-BBK-9K
under the ideal context and the industrial context. On one hand, we find that the performance of all four
methods dramatically decreases when the testing context is moved from the ideal to the industrial, the
latter of which is much more challenging with less and biased seed mappings. For instance, considering
the average MRR of all four methods on all testing mappings, it drops from 0.661 to 0.262 on D-W-15K,
and from 0.327 to 0.118 on MED-BBK-9K.

We also find that the performance decreasement, when moved to the industrial context, varies from
one testing mapping split to another. Considering the name-based splitting, the decreasement is the most
significant on the “different” split, and the least significant on the “same” split. Take MultiKE on MED-
BBK-9K as an example, its Hits@1 decreases by 11.4%, 13.9% and 43.1% on the “same”, “close” and
“different” splits respectively. As a result, the methods including MultiKE and RDGCN perform better
on the “same” split than on the “close” and the “different” splits. It meets our expectations because the
seed mappings in the industrial context, which are sampled with a bias toward those with high name

5The word embeddings are publicly available at https://fasttext.cc/docs/en/english-vectors.html.
6Other Chinese word embedding models would suffice to reproduce comparable experimental results.
7http://webdam.inria.fr/paris/



185

Table 2: Overall results under the ideal context and the industrial context.

Models Name-based Splits (Hits@1) Attr-based Splits (Hits@1) All Test Mappings
Same Close Diff. Small Medium Large Hits@1 Hits@5 MRR

D
-W

-1
5K

Id
ea

l
BootEA .868 .902 .753 .721 .821 .912 .818 .922 .864
MultiKE .977 .254 .216 .306 .488 .661 .484 .622 .554
RDGCN .942 .934 .305 .330 .734 .827 .629 .756 .687
RSN4EA .718 .718 .579 .536 .663 .753 .650 .797 .717

In
du

st
ri

al BootEA .050 .051 .023 .015 .040 .053 .037 .092 .065
MultiKE .968 .211 .036 .086 .392 .605 .368 .426 .402
RDGCN .945 .872 .062 .110 .559 .759 .489 .539 .514
RSN4EA .055 .060 .029 .016 .046 .065 .043 .092 .068

M
E

D
-B

B
K

-9
K

Id
ea

l

BootEA .334 .259 .328 .388 .201 .265 .307 .495 .399
MultiKE .342 .173 .072 .269 .149 .195 .213 .367 .289
RDGCN .550 .217 .056 .348 .270 .242 .306 .425 .365
RSN4EA .238 .121 .226 .277 .114 .095 .195 .311 .253

In
du

st
ri

al BootEA .006 .003 .003 .006 .002 .004 .004 .011 .010
MultiKE .303 .149 .041 .218 .137 .155 .179 .322 .252
RDGCN .329 .083 .013 .201 .120 .086 .158 .239 .199
RSN4EA .008 .002 .007 .009 .001 .000 .005 .013 .011

similarity, are close to the “same” split and far away from the “different” split. However, such a regular
is violated when we consider the attribute based seed mapping splits. As to MultiKE tested by the “large”
testing split, its performance decreasement when moved to the industrial context is the least significant on
D-W-15K, which is as expected, but is the most significant on MED-BBK-9K. Thus MultiKE performs
worse on the “large” testing split than on the “small” testing split (with 28.9% lower Hits@1), although
the former is more close to the seed mappings. One potential explanation is that mappings with more
than 5 attributes (mappings in the “large” testing split) in MED-BBK-9K tend to have duplicate attributes
and some attribute values are sentences that cannot be fully utilized by these methods.

On the other hand, we find that MultiKE and RDGCN are much more robust than BootEA and RSN4EA
in the industrial context on both D-W-15K and MED-BBK-9K. Although MultiKE and RDGCN do not
perform as well as in the ideal context, their performance is still promising. Specifically, when measured
by all testing mappings, RDGCN performs better than MultiKE on D-W-15K with 27.9% higher MRR
and 32.9% higher Hits@1 but performs worse than MultiKE on MED-BBK-9K with 21.3% lower MRR
and 11.7% lower Hits@1. The performance of BootEA and RSN4EA is poor in the industrial context;
their Hits@1, Hits@5, and MRR on all testing mappings or on different testing splits are all lower than
0.1 for both benchmarks. This means that they are very sensitive to the size or/and the bias of the seed
mappings (cf. Section 4.3 for the ablation studies).

4.3 Ablation Studies

4.3.1 Size Impact
According to the results in the “With No Bias” setting in Table 3, we can first find that MultiKE and
RDGCN are relatively robust w.r.t. a small training mapping size. Considering their Hits@1 measured
on all the test mappings, it drops slightly from 0.484 to 0.394 and from 0.629 to 0.513 respectively when
the training mapping size is significantly reduced from 20% to 2%. On the “same” testing split and the
“large” testing split, both of which are close to the training mappings, the performance of MultiKE and
RDGCN keeps relatively good when trained by 2% of the mappings. On the other two splits, which
are more biased compared with training mappings, the performance of MultiKE and RDGCN, however,
decreases more significantly.

Furthermore, we find that BootEA and RSN4EA are very sensitive to the training mapping size. For
example, the MRR of BootEA (resp. RSN4EA) measured by all the test mappings decreases from 0.864
to 0.153 to 0.051 (resp. from 0.717 to 0.132 to 0.044) when the training ratio decreases from 20% to
4% to 2%. The performance of BootEA is beyond our expectation as it is a semi-supervised algorithm
designed for a limited number of training samples. Besides all the testing mappings, their performance
decreasement is also quite significant on different testing splits including the “same” and the “large”.
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Table 3: Results on D-W-15K under different settings (biases and ratios) of the training mappings.

Settings Models Name-based Splits (Hits@1) Attr-based Splits (Hits@1) All Test Mappings
Same Close Diff. Small Medium Large Hits@1 Hits@5 MRR

W
ith

N
o

B
ia

s

20
%

BootEA .868 .902 .753 .721 .821 .912 .818 .922 .864
MultiKE .977 .254 .216 .306 .488 .661 .484 .622 .554
RDGCN .942 .934 .305 .330 .734 .827 .629 .756 .687
RSN4EA .718 .718 .579 .536 .663 .753 .650 .797 .717

4%

BootEA .104 .087 .092 .078 .085 .125 .096 .206 .153
MultiKE .975 .217 .088 .159 .440 .647 .413 .513 .467
RDGCN .898 .901 .123 .163 .650 .754 .521 .605 .562
RSN4EA .105 .079 .090 .071 .078 .133 .093 .168 .132

2%

BootEA .024 .022 .030 .028 .025 .026 .026 .073 .051
MultiKE .969 .224 .048 .121 .428 .639 .394 .463 .433
RDGCN .900 .895 .107 .147 .636 .761 .513 .582 .547
RSN4EA .026 .015 .031 .025 .021 .034 .027 .056 .044

W
ith

N
am

e
B

ia
s

20
%

BootEA .871 .903 .535 .433 .737 .931 .645 .766 .702
MultiKE .978 .285 .080 .085 .230 .318 .185 .335 .261
RDGCN .966 .924 .111 .102 .521 .641 .362 .441 .402
RSN4EA .786 .800 .391 .271 .631 .827 .514 .656 .580

4%

BootEA .733 .817 .358 .260 .633 .802 .554 .642 .596
MultiKE .971 .209 .053 .106 .391 .609 .358 .427 .398
RDGCN .956 .905 .076 .128 .616 .766 .491 .544 .518
RSN4EA .198 .185 .087 .051 .147 .228 .138 .228 .182

2%

BootEA .031 .031 .017 .013 .026 .034 .024 .069 .049
MultiKE .968 .195 .027 .093 .389 .617 .360 .404 .388
RDGCN .956 .871 .056 .118 .606 .766 .490 .541 .516
RSN4EA .054 .040 .027 .018 .036 .062 .038 .084 .062

W
ith

A
ttr

ib
ut

e
B

ia
s 20

%

BootEA .789 .870 .397 .365 .734 .936 .565 .682 .621
MultiKE .975 .358 .078 .145 .488 .767 .334 .459 .398
RDGCN .946 .919 .109 .168 .667 .885 .437 .522 .479
RSN4EA .725 .816 .309 .277 .670 .834 .489 .611 .546

4%

BootEA .704 .819 .337 .245 .622 .800 .538 .611 .574
MultiKE .972 .211 .057 .115 .430 .662 .383 .450 .421
RDGCN .922 .908 .091 .133 .630 .798 .501 .557 .529
RSN4EA .192 .213 .083 .056 .156 .228 .141 .232 .185

2%

BootEA .052 .051 .023 .017 .039 .059 .037 .094 .066
MultiKE .968 .229 .041 .104 .426 .651 .384 .449 .421
RDGCN .915 .895 .078 .122 .615 .785 .497 .552 .524
RSN4EA .068 .073 .027 .018 .050 .083 .049 .096 .073

4.3.2 Name Bias Impact

The name bias impact from the seed mappings can be evaluated by comparing the settings of “With Name
Bias” and “With No Bias” in Table 3. With 20% of the mappings for training, MultiKE and RDGCN are
more negatively impacted by the name bias than BootEA and RSN4EA; for example, the MRR measured
by all the test mappings drops by 52.9% and 41.5% respectively, while that of BootEA and RSN4EA
drops only by 18.8% and 19.1% respectively.

Specifically, considering different testing mapping splits, the negative impact on MultiKE and
RDGCN mainly lies in the “different” split (e.g., Hits@1 of RDGCN drops from 0.305 to 0.111), while
the impact on the “same” and the “close” is relatively limited and sometimes even positive. Mappings in
the “different” testing split, which have very biased distributions as the training mappings, are sometimes
known as long-tail prediction cases, and the above phenomena indicate their universality and difficulty
in an industrial context. On the other hand, the negative impact of name bias on MultiKE and RDGCN
is still much less than the negative impact of the small size on BootEA and RSN4EA. Thus when im-
pacted by both small size (using 2% of the mappings for training) and name bias, BootEA and RSN4EA
perform poorly. It is also worth noting that RDGCN outperforms other methods by a large margin in the
“close” split under all the experimental settings; for example, its Hits@1 reaches 0.905 and 0.871 with
4% and 2% training mappings while that for MultiKE is only 0.209 and 0.195 respectively.
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4.3.3 Attribute Bias Impact
The attribute bias impact from the seed mappings can be analysed by comparing the settings of “With
Attribute Bias” and “With No Bias” in Table 3. When 20% mappings are used for training, its negative
impact on all four methods are similar; for example, the MRR of BootEA, MultiKE, RDGCN, and
RSN4EA on all testing mappings drops by 28.1%, 28.2%, 30.3%, and 23.8% respectively. The negative
impact is especially significant on the “small” testing split as its average attribute number is very different
from that of the training mappings. In contrast, the impact on the “large” testing split is even positive
for all four methods; for example, when trained by 4% of the mappings, Hits@1 of RSN4EA increases
from 0.133 to 0.228. Especially, under the attribute bias, reducing the training mappings size has limited
impact on MultiKE and RDGCN, and sometimes the impact is even positive that for example, the MRR
of MultiKE and RDGCN on all testing mappings increases by 5.8% and 10.4% respectively when the
training mapping ratio drops from 20% to 4%.

4.4 Comparison with Conventional System
This subsection presents the comparison between the embedding-based methods and the conventional
system PARIS (Suchanek et al., 2011), using results in both Table 2 and Table 4. Note that Hits@1 in
Table 2 is equivalent to Precision, Recall, and F1-Score in our evaluation with all one-to-one mappings.
Although PARIS is an automatic system needing no supervision, it still significantly outperforms all
four embedding based methods on both D-W-15K and MED-BBK-9K. On MED-BBK-9K whose two
KGs for alignment are more heterogeneous, the outperformance of PARIS is even more significant; for
example, the F1-score of PARIS is 0.493, while the best of the four embedding based methods is 0.307
(resp. 0.179) when trained in the ideal (resp. industrial) context. One important reason we believe is that
these embedding based methods ignore the overall reasoning and the correlation of different mappings,
while PARIS utilizes them by an iterative workflow and makes holistic decisions. Luckily, such reasoning
capability and inter-mapping correlations can also be considered in the embedding-based methods, and
this indicates an important direction for the future industrial application.

Table 4: Results of conventional system PARIS on D-W-15K and MED-BBK-9K.

Benchmark Metric Name-based Splits Attr-based Splits All Test Mappings
Same Close Diff. Small Medium Large

D-W-15K
Precision .998 .998 .900 .868 .980 .999 .956
Recall .980 .975 .707 .640 .914 .987 .846
F1-score .989 .986 .792 .736 .946 .993 .898

MED-BBK-9K
Precision .910 .669 .778 .879 .748 .757 .814
Recall .505 .248 .258 .417 .293 .314 .354
F1-score .649 .362 .388 .565 .422 .444 .493

5 Conclusion and Discussion

In this study, we evaluate four state-of-the-art embedding-based entity alignment methods in an ideal
context and an industrial context. To build the industrial context, a new benchmark is constructed with
two real-world KGs, and the seed mappings are extracted with different sizes, different name and attribute
biases. The performance of all four investigated methods dramatically drops when being evaluated in
the industrial context, worse than the traditional system PARIS. Specifically, MultiKE and RDGCN are
sensitive to name and attribute bias but robust to seed mapping size; BootEA and RSN4EA are extremely
sensitive to seed mappings size, leading to poor performance in the industrial context.

Based on these empirical findings, we recommend to specifically design strategies in crowdsourcing
(with tool assistance) to ensure the annotated samples in different name and attribute distributions. In our
industrial context where the seed mappings are limited, adopting MultiKE or RDGCN is demonstrated
to be a better choice for cross-KG alignments. Meanwhile, as mentioned in the evaluation, an ensemble
of such embedding based methods with PARIS or LogMap, which considers the correlation between
mappings, is also a promising solution for better performance. Finally, we also plan to develop a robust
model that can utilize a complete set of attributes, especially those with values of textual descriptions.
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