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Abstract
This paper reports on whether transfer learn-
ing can improve the prediction of the difficulty
and response time parameters for ≈ 18,000
multiple-choice questions from a high-stakes
medical exam. The type of the signal that best
predicts difficulty and response time is also ex-
plored, both in terms of representation abstrac-
tion and item component used as input (e.g.,
whole item, answer options only, etc.). The
results indicate that, for our sample, transfer
learning can improve the prediction of item dif-
ficulty when response time is used as an auxil-
iary task but not the other way around. In ad-
dition, difficulty was best predicted using sig-
nal from the item stem (the description of the
clinical case), while all parts of the item were
important for predicting the response time.

1 Introduction

The questions on standardized exams need to meet
certain criteria for the exam to be considered fair
and valid. For example, it is often desirable to col-
lect measurement information across a range of ex-
aminee proficiencies but this requires that question
difficulties span a similar range. Another consider-
ation is the time required to answer each question:
allocating too little time makes the exam speeded
whereas allocating too much time makes it ineffi-
cient. Typically, difficulty and response time mea-
sures are needed before new questions can be used
for scoring. Currently, these measures are obtained
by presenting new questions alongside scored items
on real exams; however, this process is time con-
suming and costly. To address this challenge, there
is an emerging interest in predicting item param-
eters based on item text (Section 2). The goal of
this application is to filter out items that should
not be embedded in live exams—even as unscored
items—because of their low probability of having
the desired characteristics.

In practice, there may be situations where data
are available for one item parameter but not for

another. For example, when a pen-and-paper test is
being migrated to a computer-based test, response
time measures to individual questions will not be
among the historical pen-and-paper data whereas
item difficulty measures will be. In this scenario,
the only available response-time data would be
those collected from the small sample of exami-
nees who first piloted the computer-based test. Yet,
since item characteristics like response time and
difficulty are often related (e.g., more difficult items
may require longer to solve), it is conceivable that
information stored while learning to predict one
parameter then could be used to improve the predic-
tion of another. In this paper, we explore whether
approaches from the field of transfer learning may
be useful for improving item parameter modeling.

We hypothesize that transfer learning (TL) can
improve the prediction of difficulty and response
time parameters for a set of ≈18,000 multiple-
choice questions (MCQs) from the United States
Medical Licensing Examination (USMLE R©). We
present two sets of experiments, where learning
to predict one parameter is used as an auxiliary
task for the prediction of the other and vice versa.
In addition to our interest in parameter modeling,
we investigate the type of signal that best predicts
difficulty and response time, which is done both
in terms of exploring potential differences in the
level of representation abstraction required to pre-
dict the two variables and in terms of the part of
the item that contains information most relevant to
each parameter. This is accomplished by extracting
two levels of item representations, embeddings and
encodings, from various parts of the MCQ (answer
options only, question only, whole item). Predic-
tions are compared to i) the predictions for each
parameter without the use of an auxiliary task, and
ii) a ZeroR baseline. The results from the trans-
fer learning experiments show the usefulness and
limitations of this approach for modeling item pa-
rameters with a view to practical scenarios where
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we have more data for one parameter. The results
for the source of the signal suggest item writing
strategies that may be adopted to manipulate spe-
cific item parameters.

2 Related Work

The majority of work related to predicting question
difficulty has been done in the field of language
learning (Huang et al., 2017; Beinborn et al., 2015;
Loukina et al., 2016). Some exceptions include
estimating difficulty for automatically generated
questions by measuring the semantic similarity be-
tween the a given question and its associated an-
swer options (Alsubait et al., 2013; Ha and Yaneva,
2018; Kurdi et al., 2016) and measuring the diffi-
culty and discrimination parameters of questions
used in e-learning exams (Benedetto et al., 2020).
With regards to medical MCQs, previous work has
shown modest but statistically significant improve-
ments in predicting difficulty using a combination
of linguistic features and embeddings (Ha et al.,
2019) as well as predicting the probability that an
item meets the difficulty and discriminatory power
criteria for use in live exams (Yaneva et al., 2020).

The literature on response time prediction is
rather limited and comes mainly from the field of
educational testing. The range of predictors that
have been explored includes item presentation po-
sition (Parshall et al., 1994), item content category
(Parshall et al., 1994; Smith, 2000), the presence of
a figure (Smith, 2000; Swanson et al., 2001), and
item difficulty and discrimination (Halkitis et al.,
1996; Smith, 2000). The only text-related feature
used in these studies was word count. A more re-
cent study by Baldwin et al. (2020) modeled the re-
sponse time of medical MCQs using a broad range
of linguistic features and embeddings (similar to
Yaneva et al. (2019)) and showed that the predicted
response times can be used to improve fairness by
reducing the time intensity variance of exam forms.

To the best of our knowledge, the use of transfer
learning for predicting MCQ parameters has not
yet been investigated. The next sections present an
initial exploration of this approach for a sample of
medical MCQs.

3 Data

The data consists of ≈ 18,000 MCQs from a high-
stakes medical licensing exam. An example of an
MCQ is presented in Table 1. Let stem denote the
part of the question that contains the description of

Figure 1: Distribution of the P-value (left) and log Re-
sponse Time (right) variables

the clinical case and let options denote the possible
answer choices. All items tested medical knowl-
edge and were written by experienced item-writers
following a set of guidelines stipulating adherence
to a standard structure. All items were administered
as (unscored) pretest items for six standard annual
cycles between 2010 and 2015 and test-takers had
no way of knowing which items were used for scor-
ing and which were being pretested. All examinees
were from accredited1 medical schools in the USA
and Canada and were taking the exam for the first
time.

Here, the difficulty of an item is defined by the
proportion of its responses that are correct. In the
educational testing community this metric is com-
monly referred to as P-value. For example, a P-
value of .67 means that the item was answered cor-
rectly by 67% of the examinees who saw that item.
(Since greater P-values are associated with greater
proportions of examinees responding correctly, P-
value might be better described as a measure of
item easiness than item difficulty.) Response Time
is measured in seconds and represents the average
amount of time it took all examinees who saw the
item to answer it. The distribution of P-values and
log Response Times for the data set is presented in
Figure 1. The correlation between the two parame-
ters for the set of items is .37.

4 Method

Three types of item text configurations were used
as input: i) item stem, ii) item options, and iii)
a combination of the stem and options (this com-
bination was used both as a single vector and as
two separate vectors). After preprocessing the raw
text (tokenization, lemmatization and stopword re-
moval), it was used to train an ELMo (Peters et al.,
2018) model2. The model was trained with two

1Accredited by the Liaison Committee on Medical Educa-
tion (LCME).

2Data pre-processing and feature extraction were imple-
mented using the PyTorch and Allennlp libraries and the
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A 55-year-old woman with small cell carcinoma of the lung is admitted to the hospital to undergo chemotherapy. Six days
after treatment is started, she develops a temperature of 38C (100.4F). Physical examination shows no other abnormalities.
Laboratory studies show a leukocyte count of 100/mm3 (5% segmented neutrophils and 95% lymphocytes). Which of the
following is the most appropriate pharmacotherapy to increase this patient’s leukocyte count?
(A) Darbepoetin (B) Dexamethasone
(C) Filgrastim (D) Interferon alfa
(E) Interleukin-2 (IL-2) (F) Leucovorin

Table 1: An example of a practice item

Figure 2: Diagram of the proposed methods.

separate objectives: one was to predict P-value and
the other one was to predict Response Time. To
learn the sequential information from the ELMo
embedding output, an encoding layer was added
after the ELMo embedding layers (Figure 2). The
encoding layer was constructed using a Bidirec-
tional LSTM network (Graves et al., 2005). This
layer allowed the extraction of encoding features,
which captured more abstract information than the
embeddings alone (the two are later compared).
The encoding layer was followed by a dense layer
in order to convert the feature vectors to the targets
through a non-linear combination of the elements
in the feature vectors.

As shown in Table 2, we used three different
ELMo configurations (small, middle, and original),
each with a different number of parameters. Since
the number of parameters of these three ELMo
structures was relatively large compared to the
size of our item pool, we used the parameters pre-
trained on the 1 Billion Word Benchmark (Chelba
et al., 2013) as the initialization.

Two modeling approaches were applied. The
first approach (Method 1) used the pre-trained
ELMo parameters as the initialization and trained
on the MCQ data with the aim of predicting the

prediction part was implemented using the scikit-learn
library. The NVIDIA Tesla M60 GPU was used to accelerate
the model training.

ELMo types Number of Output Parameters
Parameter dimension updating

Small 13.6 million 128 Tuning
Middle 20.8 million 256 Tuning
Original 93.6 million 1024 Freezing

Table 2: ELMo architectures. Parameter tuning was
performed for the Small and Middle models. When
training the Original ELMo structure, the parameters
were frozen (or not updated) because of the memory
limitations (6GB) of our NVIDIA Tesla M60 GPU plat-
form.

item parameter of interest (either P-value or Re-
sponse Time). In this scenario, the target variable
used in the training procedure was the same as
the target variable in the prediction part. The sec-
ond approach (Method 2) also used the pre-trained
ELMo parameters as the initialization but these
were updated when training on the auxiliary task.
In other words, if the target variable in the predic-
tion part was P-value, then the target variable in the
training part was Response Time and vice-versa.
Since we are also interested in understanding the ef-
fects of different levels of abstraction on parameter
prediction (as captured by the embeddings and en-
codings), we used linear regression (LR) to predict
the item characteristics using the extracted features
as input. The training set, the validation set and
the testing set consisted of 12,000 samples, 3,000
samples, and 3,000 samples, respectively.

5 Results and Discussion

The results for the experiments are presented in Ta-
ble 3. As can be seen, the models achieved a slight
but significant RMSE decrease compared to the
ZeroR baseline. In addition, Method 2 significantly
improved the prediction of the Response Time vari-
able (when predicting P-value is used as an auxil-
iary task) but this was not the case the other way
around (predicting P-value with Response Time
as an auxiliary task). A possible explanation for
this result is the fact that the models were much
better at predicting the Response Time component
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P-value (M1) Resp. Time (M1) P-value (M2) Resp. Time (M2)
ELMo Item component Embed Encod Embed Encod Embed Encod Embed Encod
Original Stem 23.60 23.32 0.31 0.33 23.62 23.33 0.31 0.33
Original Answer options 23.61 23.35 0.35 0.35 23.63 23.29 0.35 0.35
Original Full Item 23.55 23.43 0.31 0.33 23.60 23.34 0.31 0.34
Original Stem + Options 23.71 23.40 0.32 0.32 24.24 23.27 0.32 0.33
Average 23.61 23.38 0.32 0.33 23.77 23.31 0.32 0.34
Small Stem 23.74 23.67 0.31 0.30 23.16* 23.20* 0.33 0.33
Small Answer options 23.48 23.68 0.35 0.34 23.23* 23.31* 0.36 0.36
Small Full Item 27.64 NA 0.31 0.30 23.20 23.23 0.38 0.70
Small Stem + Options 23.71 23.71 0.30 0.29 23.04* 23.21* 0.34 0.33
Average 24.64 23.69 0.32 0.31 23.16 23.24 0.35 0.43
Middle Stem 23.54 23.73 0.31 0.30 23.32 23.16* 0.32 0.36
Middle Answer options 24.90 23.74 0.35 0.35 23.67 23.38* 0.37 0.37
Middle Full Item 23.45 23.65 0.30 0.30 23.39 23.22* 0.32 0.33
Middle Stem + Options 24.76 23.95 0.31 0.30 23.82 23.24* 0.33 0.37
Average 24.16 23.77 0.32 0.31 23.55 23.25 0.34 0.36
Total aver. 24.17 23.60 0.32 0.32 23.49 23.26 0.34 0.38

Baseline
ZeroR 23.97 0.35

Table 3: Results for P-value and Response Time using Method 1 (columns 3-4) and Method 2 (columns 5-6). The
values represent the Root Mean Squared Error (RMSE) for each model obtained using linear regression. Values
marked with * represent cases, where the use of Method 2 has resulted in a statistically significant improvement
compared to Method 1 (95% Confidence Intervals). The best result in each column is marked in red.

compared to the ZeroR baseline and this knowl-
edge successfully transferred into improving the
P-value prediction. The gains in predicting the P-
value on the other hand were much more modest,
which may explain why they did not contribute to
the prediction of Response Time. Another possi-
ble explanation could be that P-values were highly
skewed whereas Response Times were normally
distributed. It could be that the normalized distri-
bution of the Response Time variable facilitates
learning of better representations compared to the
skewed distribution of the P-value variable. A di-
rection for future work is to test this by normalizing
both distributions.

Not all parts of the item were equally important
for predicting the two parameters. Signal from
the stem alone provided the best results for the
P-value variable in Method 1 (23.32) and when P-
value was used as an auxiliary task for predicting
Response Time (0.31) in Method 2 (i.e., adding in-
formation from the answer options did not improve
the result). By contrast, signal from the full item
outperformed other configurations when the Re-
sponse Time was predicted using Method 1 (0.29)
and when Response Time was used as an auxiliary
task for predicting the P-value (23.04). Therefore,
the stem contained signal that was most relevant to
the P-value variable, while the Response Time was
best predicted using information from the entire
item. This suggests that deliberating between the

different answer options and reading the stem all
have effects on the Response Time. However, the
difficulty of the clinical case presented in the stem
seems to have a stronger relation to the P-value
than the difficulty attributed to choosing between
the answer options. Using the stem and options
content as two predictors (Stem + Options) had no
significant effects but, on average, provided slightly
more accurate results than the single predictor (Full
Item). Finally, no clear pattern emerged with re-
gards to the predictive utility of using embeddings
vs. encodings or the embedding dimensions and
weight tuning produced by training the three ELMo
models (Small, Middle and Original).

These results represent a first step towards the
exploration of transfer learning for item parame-
ter prediction and may have implications for both
parameter modeling and item writing.

6 Conclusion

This study investigated the use of transfer learning
for predicting difficulty and Response Times for
clinical MCQs. Both parameters were predicted
with a small but statistically significant improve-
ment over ZeroR. This prediction was further im-
proved for P-value by using transfer learning. It
was also shown that the item stem contained sig-
nal that was most relevant to the P-value variable,
while the Response Time was best predicted using
information from the entire item.
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