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Abstract
We introduce a transductive model for pars-
ing into Universal Decompositional Semantics
(UDS) representations, which jointly learns
to map natural language utterances into UDS
graph structures and annotate the graph with
decompositional semantic attribute scores. We
also introduce a strong pipeline model for pars-
ing into the UDS graph structure, and show
that our transductive parser performs compa-
rably while additionally performing attribute
prediction. By analyzing the attribute predic-
tion errors, we find the model captures natural
relationships between attribute groups.

1 Introduction

A structured account of compositional meaning has
been longstanding goal for both natural language
understanding and computational semantics. To
this end, a number of efforts have focused on en-
coding semantic relationships and attributes in a
semantic graph—e.g. Abstract Meaning Represen-
tation (AMR; Banarescu et al., 2013), Universal
Conceptual Cognitive Annotation (UCCA; Abend
and Rappoport, 2013), and Semantic Dependency
Parsing (SDP; Oepen et al., 2014, 2015, 2016).

In these formalisms, semantic information is typ-
ically encoded discretely, using nominal category
labels for nodes and edges. This categorical en-
coding can make such formalisms brittle when pre-
sented with non-prototypical instances, and leads
to challenges in coping with changing label ontolo-
gies and new datasets (White et al., 2019). Further-
more, they are difficult to annotate, often requiring
trained linguists and large annotation manuals.

The Decompositional Semantics framework
presents an alternative to categorical formalisms
that encodes semantic information in a feature-
based scheme—using continuous scales rather than
categorical labels. Starting with a feature-based se-
mantic role representation rooted in Dowty 1991’s

(1991) proto-role theory (Reisinger et al., 2015;
White et al., 2016), this framework has expanded to
cover a wide variety of phenomena: event factuality
(Rudinger et al., 2018b), genericity (Govindarajan
et al., 2019), entity types (White et al., 2016), and
temporal relations (Vashishtha et al., 2019).

While this rich array of annotation types has
been separately modeled, no system yet exists for
its joint prediction, which has only recently been
made feasible by the introduction of Universal
Decompositional Semantics v1.0 (UDS1.0). Pre-
sented by White et al. (2019), UDS1.0 normalizes
all of these annotations, and incorporates them as
node- and edge-level attributes in a single semantic
graph whose structure is deterministically extracted
from Universal Dependencies (UD; Nivre et al.,
2015) syntactic parses via the PredPatt tool (White
et al., 2016; Zhang et al., 2017).1 An example
graph can be seen in Fig. 1.

We present the first joint UDS parser, which
learns to extract both graph structures and attributes
from natural language input. This parser is a
sequence-to-graph transductive model which takes
as input a sentence and outputs a UDS graph com-
plete with node- and edge-level annotations.

In contrast to the traditional semantic parsing
paradigm, which shares its roots with syntactic
parsing and rests on the assumption that the nodes
in the graph correspond to tokens in the input—
i.e. the graph is lexicalized—the parsing-as-
transduction paradigm treats parsing as a sequence-
to-graph problem. Rather than generating one se-
quence conditional on another sequence (sequence-
to-sequence), we generate the nodes in a graph con-
ditional on an input sequence, dynamically adding
their edges during generation. As in sequence-
to-sequence modeling, the supports of the input
and output distributions—i.e. the input and output

1Available at http://decomp.io.

http://decomp.io


8428

Subspace           Attribute                  Val

Subspace           Attribute                  Val

of Hiller Taiwanthe Chechnya asked Bush to name leaders , , andIndia Pakistan

Subspace           Attribute                  Val

               arg. edge predicate node argument node syntax node instance edge nonhead edgesyntax  edge

protoroles

protoroles

protoroles

protoroles

protoroles

awareness

change-of-location

change-of-possession

change-of-state

existed-before

…

-0.110

-0.039

0.000

 -0.104

1.402

factuality

genericty

genericity

genericity

time

time

time

factual

pred-dynamic

pred-hypothetical

pred-particular

dur-days

dur-minutes

dur-seconds

…

1.038

1.418

-0.892

 1.418

-1.062

 -0.912

1.260

genericity

genericity

genericity

word-sense

word-sense

word-sense

arg-abstract

arg-kind

arg-particular

noun.act

noun.cognition

noun.food

…

-1.112

1.195

-1.112

 -3.000

-3.000

 -3.000

semantic head edge

Figure 1: The UDS graph structure. Semantic subgraph is outlined in black while the syntactic subgraph is
annotated in pink. Node and edge attribute annotations are shown via annotations on argument and attribute edges.

vocabularies—are not constrained to be identical.
This has two benefits: first, post-hoc methods

of obtaining alignments between input sequences
and graphs—common especially in AMR parsing—
are no longer required; and second, we are able
to produce semantic graphs from arbitrary input
vocabularies—allowing for future extensions to
cross-lingual parsing (Zhang et al., 2018). The
parsing-as-transduction paradigm thus lends itself
perfectly to UDS parsing, since the UDS protocol
allows non-lexicalized (as well as cross-lingual)
graphs, and these graphs may have nodes with mul-
tiple parents—i.e. re-entrant nodes—which pose
problems for traditional tree-based methods but are
handled natively by the transductive paradigm.

We compare our end-to-end transductive parser
against a strong pipeline system, finding that the
parser slightly outperforms the pipeline while addi-
tionally learning to produce decompositional at-
tribute scores. Our results are reflected in the
UDS1.0 leaderboard at http://decomp.io/
leaderboards/.

2 Related Work
Datasets Reisinger et al. (2015) introduce the De-
compositional Semantics framework in the context
of a corpus-based verification of Dowty’s semi-
nal proto-role theory of semantic roles. This work
was substantially expanded by White et al. (2016),
who annotate for semantic proto-roles (SPR), word-
sense, and temporal properties on top of seman-
tic graphs extracted from English Web Treebank
(EWT; Bies et al., 2012) UD parses using PredPatt
(White et al., 2016; Zhang et al., 2017).

White et al.’s EWT annotations are modeled by
Teichert et al. (2017), who present a CRF-based
multi-label classifier for proto-role labelling, and

Rudinger et al. (2018a), who make use of an event-
driven neural model. More recently, the annotation
coverage for the same EWT data was expanded by
Vashishtha et al. (2019) who annotate and model
fine-grained temporal distinctions, and Govindara-
jan et al. (2019), who add annotations and models
for genericity—i.e. the degree of generality of
events and entities in linguistic expressions.

All of these efforts coalesce in White et al.
(2019), which presents the first unified Decom-
positional Semantics-aligned dataset—Universal
Decompositional Semantics v1.0 (UDS1.0)—
containing all properties annotated on top of EWT
parses with standardized train, validation, and test-
ing splits and a native reader and query interface.

Parsing In most work on decompositional se-
mantics, models are tasked with learning to pre-
dict attribute values, but not the structure of the
graph. Zhang et al. (2018) develop the first model
for performing both graph parsing and UDS at-
tribute prediction in a cross-lingual setting, where
Chinese input sentences were transduced into UDS
graphs derived from UD parses of the input’s En-
glish translation. This represents the first appli-
cation of the parsing-as-transduction paradigm to
a subset of UDS data as well as the introduction
of a novel graph evaluation metric, S which we
describe in further detail in Section 5. In contrast
to the end-to-end approach presented here, Zhang
et al. take a pipeline approach to parsing.

Andreas et al. (2013) recast semantic parsing in
a tree formalism as a sequence-to-sequence prob-
lem. Parsing-as-transduction, which extends this
approach to directed acyclic graphs, has proven
to be applicable in a variety of settings: Zhang
et al. (2019a) use it to achieve state-of-the-art re-

http://decomp.io/leaderboards/
http://decomp.io/leaderboards/
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sults in AMR parsing. These results are improved
upon and shown to generalize to two other seman-
tic formalisms (UCCA and SDP) by Zhang et al.
(2019b), which set new state-of-the-art benchmarks
for AMR and UCCA. The former result was subse-
quently surpassed by Cai and Lam (2020), which
applies a similar transductive approach, while the
latter was surpassed by Jiang et al. (2019).

Having both been subjects of SemEval tasks
(May, 2016; May and Priyadarshi, 2017; Oepen
et al., 2019; Hershcovich et al., 2019), there are
a number of contrasting methods for both AMR
and UCCA parsing. These include transition-based
parsing system for AMR (Wang et al., 2018; Good-
man et al., 2016; Damonte et al., 2017; Balles-
teros and Al-Onaizan, 2017) and for UCCA (Her-
shcovich et al., 2017). In a similar vein to Zhang
et al. (2019b), Hershcovich et al. (2018a) convert
multiple formalisms into a unified formalism and
use multitask learning for improved UCCA parsing;
however, the latter does so at a loss to performance
on the other formalisms, while Zhang et al. achieve
state-of-the-art results in AMR and UCCA simul-
taneously. UCCA has also been shown to transfer
to syntactic parsing: by converting UD parse trees
into a format resembling UCCA, Hershcovich et al.
(2018b) are able to apply a UCCA parser to both
standard UD parses as well as enhanced UD parses,
which contain re-entrant nodes.

3 Data

The UDS1.0 dataset is built on top of the UD-EWT
data with three layers of annotations: UD parses,
PredPatt graph structure, and decompositional se-
mantic annotations on the edge and node level. In
addition to specifying the syntactic head and head
relation of every token in the input, UD parses in-
clude lexical features, such as word form, word
lemma, and part-of-speech (POS) tag. This forms
the syntactic graph, which is lexicalized (each to-
ken is tied to a node in the graph). From these
pieces of information, PredPatt outputs a set of
predicates and their arguments.

Each predicate and argument is tied via an in-
stance edge to a particular node in the syntactic
graph. Because both predicates and arguments can
consist of multi-word spans, there can be multiple
instance edges leaving a semantic node. The seman-
tic graph contains edges between predicates and
arguments; in the case of clausal embedding, there
can also be argument-argument edges. UDS1.0

asked

Hiller Bush(1) name

leaders

the of Che. Tai. Ind. and Pak.

SOMETHING

to Bush(1)

Figure 2: Arborescence for graphs with object control.

includes “performative” speaker/author and ad-
dressee nodes, which model discourse properties
of the sentence. These nodes are structural place-
holders for future discourse-level annotations; as
these properties have not yet been annotated, we
have opted to remove them from the graphs.2

The crowdsourced decompositional annotations
tied to the semantic subgraph can be divided into
node-level annotations and edge-level annotations.
On the node level, annotations were collected for
factuality, genericity, time, and entity type. Edge-
level annotations are in the space of semantic proto-
roles, which are designed to provide a nuanced
higher-dimensional substrate for notions of agency
and patienthood. These are summarized in Table 1,
where purple indicates a high attribute score, while
orange indicates a low score. For further details on
attribute types and data annotation, see White et al.
(2019) and the references therein.
Arborescence Recall that the lowest level of the
UDS graph (Fig. 1) is a syntactic dependency parse.
Modeling this level is out of scope for this work, as
we are interesting in modeling the semantic struc-
ture and attributes. In order to train a parsing-as-
transduction model, an arborescence—a hierarchi-
cal tree structure which has only edge and node
annotations—is required. From the full UDS graph,
we construct the arborescence by:
(a) Assigning each semantic node a lexical la-

bel; this label is taken from the syntactic head
that the semantic node dominates. The only
exception to this is in the case of embedded
clauses, where an argument node dominates
an embedded predicate. Here, we follow Pred-
Patt, assigning the label “SOMETHING” to
the embedded argument (c.f. Fig. 2).

2Since these placeholder nodes are currently added deter-
ministically, recovering them is also a deterministic operation.
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Annotation Description Examples
Factuality Factuality inferences represent how likely

(or unlikely) a listener thinks a scenario
is to have occurred.

Jo left (3), Jo didn’t leave (-3), Jo thought
that Cole had left (-1)

Genericity Genericity refers to inferences about the
generality of events or event participants.

Ex. property: genericity-pred-particular:
Amy ate oats for breakfast today (3),
Amy ate oats for breakfast every day (-3)

Time Temporal inferences pertain to the dura-
tion of events.

Ex. property: time-dur-minutes: Tom left
(-3), Tom was singing (3)

Word Sense UDS decomposes word sense, allowing
multiple senses to apply to a given node.

Ex. property: supersense.person: Sandy
led Rufus by a leash (-3), Sandy led Ru-
fus by a leash (3)

Semantic
Proto-Roles

SPR properties are edge-level annotations
that capture fine-grained semantic rela-
tions between predicates and arguments.

Ex. property: volition:, Derek broke his
arm (-3), Derek broke the wishbone (3)

Table 1: Type descriptions and illustrative sentences for UDS properties predicted in this work. Example ratings
in parentheses, bolding indicates the salient predicate/argument/edge. See White et al. (2019) for further details.

(b) Retaining all edges between semantic nodes
as “argument” edges, duplicating nodes in
cases of re-entrancy (e.g. “Bush(1)” in Fig. 2).

(c) Converting the deep syntactic structure into
a shallow representation, where we introduce
“non-head” edges from the syntactic head
(attached to a semantic node) to each node
it dominates, and remove all other syntax-
semantics edges. This effectively linearizes
the yield of each semantic node (see Fig. 2).

4 Model

Our model is based on the transductive broad-
coverage parsing model presented in Zhang et al.
(2019b), which can be consulted for further de-
tails on the encoder, decoder, and pointer-generator
modules. The original parser is composed of six
major modules: the encoder, the decoder embed-
ding module, the target node module, the target la-
bel module, the head module, and the relation mod-
ule. In this work we introduce two new modules:
the node attribute module and the edge attribute
module, as well a loss function for attributes.
Encoder The encoder module takes a concatena-
tion of multiple input features: GloVe token em-
beddings (Pennington et al., 2014), POS tag em-
beddings, character CNN embeddings, and BERT
(Devlin et al., 2019) contextual embeddings (mean-
pooled over subwords). These representations are
passed through a stacked bidirectional LSTM en-
coder, which has the following definition:

slt =

[−→s lt←−s lt
]
=

[−−−−→
LSTM(sl−1

t , stt−1)←−−−−
LSTM(sl−1

t , stt+1)

]

where arrows denote the LSTM direction, t denotes
the timestep, and l denotes the layer of the stack.
Decoder embedding module In order to gener-
ate new semantic nodes and relationships, a method
of embedding categorical semantic information is
required. More formally, a semantic relation is
given by a tuple 〈ui, dui , ri, vi, dvi 〉, where ui de-
notes the “head” token of index i and vi denotes
the token at index i. Note that these tokens are
the labels of nodes in the arborescence (see Fig 2.)
dui and dvi are the indices of ui and vi, while ri is
the relationship type between vi and ui. The de-
coder embedding module embeds these categorical
variables into real space, producing a tuple of vec-
tors 〈ui,dui , ri,vi,dvi 〉. For node labels ui and vi,
we take the concatenation of GloVe and CharCNN
features. ri, dvi and dui are randomly initialized.
Target Node Module From the continuous em-
bedding of a semantic relation 〈ui,dui , ri,vi,dvi 〉
we want to obtain a latent node representation zi.
We initialize the hidden states of the 0th layer and
the hidden states of the 0th state in each layer to

h0
i = [vi;d

v
i ]

hl
0 = [←−s l1;

−→s ln]

respectively. Further, let ci be a context vector over
encoder states sl1:n, defined as

a(enc)
i = softmax

(
MLP(enc)([hli; s

l
1:n])

)
ci = aTi s

l
1:n
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Let hli and zi be defined as follows:

zi = MLP(relation)([hli; ci; ri;ui;d
u
i ])

hli = LSTM(hl−1
i ,hli−1)

where zi can be thought as a representation of node
i in the graph, conditioned on previous nodes (via
hli as well as the input text via ci, the graph token
(via ui and dui ) and the relation type (via ri).

Using this representation zi, Zhang et al. (2019b)
introduce an extended pointer-generator network
(See et al., 2017) which computes the distribution
over the next node label vi+1:

[pgen, penc,pdec] = softmax
(
MLP(switch)(zi)

)
adec
i = softmax

(
MLPdec([z1:i])

)
p(vocab)
i = softmax

(
MLP(vocab)(zi)

)
P(vi+1) = pgenp(vocab)

i ⊕ penca
(enc)
i ⊕ pdeca

(dec)
i

From this last equation, we have that the generation
of a new node is decomposed into three options:
(1) generate a new node from a vocabulary of node
labels, (2) copy a node label directly from the input
sequence (lexicalization), or (3) copy a node label
from a previously generated node (re-entrancy).

Parsing modules To obtain a parse from the
node states h1:n, a head node and relation type
must be assigned to each node 1 : n. In order
to assign a head node, we instantiate two multi-
layer perceptrons (MLPs): MLP(start) and MLP(end),
where (start) denotes the starting node of the edge
and (end) denotes its target. Using these MLPs, for
node i+ 1 we obtain

h(start)
i+1 = MLP(start)(hli+1)

h(end)
1:i = MLP(end)(hl1:i)

P(ui+1) = softmax
(
BIAFFINE(h(start)

i+1 ,h(end)
1:i )

)
The next relationship ri+1 is computed in a similar
fashion, also using two MLPs:

h(rel-src)
i+1 = MLP(rel-src)(hlj)

h
(rel-tgt)
i+1 = MLP(rel-tgt)(hli+1)

P(ri+1) = softmax
(
BILINEAR(h(rel-src)

i+1 ,h
(rel-tgt)
i+1 )

)
where j is the index of the head assigned to the
node indexed by i+ 1.3

3BIAFFINE is defined in Dozat and Manning (2016).
BILINEAR(x1, x2) = x1Ax2 + b where A and b are learned
parameters.

Node attribute module As noted in previous
UDS projects, an important step in decomposi-
tional attribute annotation is determining whether
a property applies in a given context. For exam-
ple, factuality typically applies only to predicate
nodes. Since all nodes (predicate and argument)
are treated identically w.r.t. their semantic relations
zi, this work introduces a two-fold node attribute
model, which predicts whether a property j applies
to a node i via a binary mask αji as well as its value
νji . This module defines αji and νji as follows:

P(αji ) = sigmoid
(
MLP(node-mask)(zi)

)
νji = MLP(node-attr)(zi)

Edge attribute module As in the case of node
attributes, edge attributes do not apply in all cases.
Therefore, a similar bifurcation strategy is pursued
with edge attribute prediction: we predict a binary
attribute mask βjs,e for attribute j on edge s→ e as
well as an attribute value λjs,e. These are given by:

m(mask)
s,e = BILINEAR(mask)(hls,h

l
e)

m(attr)
s,e = BILINEAR(attr)(hls,h

l
e)

P(βjs,e) = sigmoid
(
MLP(edge-mask)(m(mask)

s,e )
)

λjs,e = MLP(edge-attr)(m(attr)
s,e )

Training The nodes in the graph are linearized in
a pre-order traversal over the arborescence, which
ensures that at prediction time, we have seen the
potential antecendent of a node for target-side copy-
ing (e.g. Bush(1) in Fig. 2), determining the or-
der of semantic nodes in the graph. The syntactic
children of these nodes are presented in the order
they appear in the text. The loss functions for the
node, head, and relation prediction modules are
cross-entropy loss, while for the masks α and β
binary cross-entropy loss is used, since each posi-
tion in the mask is a separate classification decision.
The loss function used for K attributes ν1:K on N
nodes/edges is given by:

τ(x) =

{
0 if x ≤ 0

1 otherwise

LMSE(ν, ν
∗) =

1

NK

N∑
i=1

K∑
j=1

cji (ν
j
i − ν

j∗
i )2
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LBCE(ν, ν
∗) =

1

NK

N∑
i=1

K∑
j=1

(
τ(νj∗i ) log(τ(νji ))

+
(
1− τ(νj∗i )

)
log
(
1− τ(νji )

))
L(ν, ν∗) = γ

2 ∗ LMSE(ν, ν
∗) ∗ LBCE(ν, ν

∗)

LMSE(ν, ν∗) + LBCE(ν, ν∗)

where γ is a scaling factor, cji is the annotator con-
fidence for annotation j on token i, ν is the set
of predicted attributes, and ν∗ is the set of true
attributes. Note that inclusion of the confidence
mask cji means the model only incurs loss on at-
tributes annotated for a given node, since cji = 0
when an annotation is missing (i.e. no MSE loss is
incurred for attributes which do not apply to a node
or edge); in the “binary” experimental setting, we
replace cji with τ(cji ), removing the weighting but
still masking out loss on un-annotated nodes. Also
note than in the case of edges, the form of the loss
is identical, but ν is replaced by λ, and α by β.

This loss encourages the predicted attribute νji
value to be close in value to the true value νj∗i via
the mean-squared error criterion while concomi-
tantly encouraging the predicted and reference val-
ues to share a sign via the thresholded cross-entropy
criterion. Both node and edge attribute models are
trained to predict attribute values independently,
and that parameters are shared across attributes.
This is central to our analysis in §7.

Following Zhang et al. (2019b) we train the struc-
tural parsing modules with coverage loss (See et al.,
2017). All models were trained to convergence us-
ing the Adam optimizer (Kingma and Ba, 2014)
with a learning rate of 0.001.

5 Experiments

Pipeline Model Recall from Section 3 that the se-
mantic graph structure in UDS graphs is determin-
istically generated from PredPatt, which takes as in-
put a UD parse and outputs a semantic graph struc-
ture. This leads to a strong pipeline model for the
graph structure alone: running a high-performing
UD parser—the Stanford UD parser (Chen and
Manning, 2014)—and passing its output through
PredPatt to create a structure.4 For this baseline,

4This structure is missing the core decompositional at-
tributes but has both predicate and argument nodes. Addi-
tionally, the pipeline model fails to capture nominal heads of
copular predicates (e.g. Jo is a doctor), which are not returned
by PredPatt but are added to the dataset as a preprocessing
step in the genericity annotation task.

Method P R F1
Pipeline 84.83 75.22 79.74
Parser 83.52 77.92 80.62
Parser (binary) 84.97 78.52 81.62

Table 2: Test set S score precision, recall, and F1.

the only source of error is the UD parsing model,
which for English performs very highly.
S Metric For evaluating the quality of output
graph structures, Smatch (Cai and Knight, 2013), a
hill-climbing approach to approximating the opti-
mal matching between variables in two graphs, is
commonly used. While Smatch can match catego-
rial variables such as those found in meaning repre-
sentations like AMR, it lacks a matching function
for continuous variables such as decompositional
attributes. To remedy this, Zhang et al. (2018) in-
troduce the S metric, an extension to Smatch that
allows for attribute matching.

Using hill-climbing, we are able to match in-
stance and attribute nodes and edges; instance
nodes are matched via string match, while attribute

similarity is given by 1−
(
νi−νj
ω

)2
where ω = 6

is the maximum possible difference between at-
tributes, which are bounded on [−3, 3].5

6 Results

Table 5 shows the Pearson’s correlation coefficient
(ρ) and the F1 score computed on binarized re-
sponses for each node and edge attribute under the
“oracle” decoding setting, where a gold graph struc-
ture is provided to the model. An asterisk denotes
that p < 0.05, where p is determined by a Student’s
t-test. F1 scores are obtained by binarizing continu-
ous attribute predictions into positive and negative,
following from the original UDS motivation found
in Dowty (1991), where binary proto-role features
were introduced. The binarization threshold was
tuned per attribute on the validation set.

The baseline column in Table 5 shows the bi-
narized F1 score for the baseline attribute model,
given by predicting the median attribute value for
each attribute type at each position. Pearson’s ρ
is undefined for this approach, as the variance of
the predicted distribution is 0. The thresholds were
similarly tuned on validation data for this baseline.

Table 2 shows S metric (c.f. §5) precision, recall,
and F1 score as computed on full arborescences

5This function was found to produce more matches on
UDS1.0 than the e−MAE function used by Zhang et al. (2018).
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with both semantics and syntax nodes. Our parser
slightly outperforms the pipeline, with higher per-
formance in the “binary” setting, where we exclude
annotator confidence from the loss.

Table 3 shows precision, recall, and F1 score on
semantics nodes alone. The first parser setting (syn-
tax) reflects a parsing model trained on full graphs,
and evaluated only on the semantic subgraphs of
the produced graphs. The second parser (seman-
tics) is directly trained on semantic subgraphs, with
no syntactic nodes in the training graphs. The full
parser performs comparably to the pipeline, while
the parser trained specifically on semantics-only
graphs outperforms the pipeline. However, the
mean attribute ρ of the syntactic parser (0.3433) ex-
ceeded that of the semantics-only parser (0.3151).

Method P R F1
Pipeline 84.72 88.51 86.57
Parser (syntax) 89.02 83.67 86.26
Parser (syntax, binary) 89.74 86.00 87.83
Parser (semantics) 91.28 87.23 89.21
Parser (sem., binary) 91.10 84.59 87.73

Table 3: Test set S score precision, recall, and F1 on
semantics nodes only, where (syntax) denotes a parser
trained to predict full graphs (semantics nodes with
non-head edges to syntax nodes) while (semantics) de-
notes model trained on semantics-only subgraphs.

Table 4 gives the S metric results on full graphs
predicted by the model, including attribute match-
ing. The pipeline model is unable to perform this
task because it predicts structure alone, without at-
tributes. We see that training the parser with shared
MLP and BILINEAR modules (i.e. MLP(mask) =
MLP(attr) and BILINEAR(mask) = BILINEAR(attr))
for both the attribute mask and attribute value heav-
ily degrades the performance, while removing an-
notator confidence increases it slightly.

7 Analysis

Table 2 suggests that the structural quality of the
parses obtained by the parsing model presented
here is slightly superior to that of pipeline model’s
parses, with Table 3 indicating that the semantic
component of the graph can be parsed significantly
more accurately by our model. Taken together with
Table 5, we can conclude that the model is able
to learn to jointly predict the graph structure and
attributes. This is further reinforced by Table 4.
Note that the numbers reported in Tables 2 and 4
are not directly comparable, as the scores in Table 4

Method P R F1
Shared 79.52 32.48 46.12
Separate 83.46 82.27 82.86
Separate (binary) 84.19 84.19 84.19

Table 4: Test set precision, recall, and F1 computed via
S score with attributes (syntactic nodes included)

Property
Pearson’s ρ F1 F1

(model) (baseline) (model)

no
de

-l
ev

el



factuality-factual 0.6479* 75.15 84.46

ge
ne

ri
ci

ty



arg-abstract 0.3392* 40.04 48.05
arg-kind 0.2145* 67.61 67.54
arg-particular 0.3347* 83.10 84.62
pred-dynamic 0.2469* 72.49 71.19
pred-hypothetical 0.3442* 44.16 50.21
pred-particular 0.1887* 77.47 78.16

tim
e



dur-centuries 0.1336* 10.14 12.30
dur-days 0.1802* 68.72 68.21
dur-decades 0.2383* 29.89 34.19
dur-forever 0.2524* 37.93 38.58
dur-hours 0.2227* 73.66 73.61
dur-instant 0.1761* 55.98 51.90
dur-minutes 0.3409* 86.28 87.05
dur-months 0.3204* 63.25 64.42
dur-seconds 0.2751* 65.33 64.75
dur-weeks 0.2475* 54.02 55.41
dur-years 0.4239* 65.03 66.19

w
or

ds
en

se


supersense-noun.Tops 0.4660* 7.34 40.00
supersense-noun.act 0.6007* 27.37 56.39
supersense-noun.animal 0.3773* 5.60 25.64
supersense-noun.artifact 0.5617* 23.12 52.79
supersense-noun.attribute 0.4505* 10.81 29.27
supersense-noun.body 0.4543* 1.53 42.86
supersense-noun.cognition 0.5692* 21.17 50.56
supersense-noun.communication 0.6182* 30.60 62.12
supersense-noun.event 0.4233* 5.80 33.61
supersense-noun.feeling 0.2404* 2.74 5.45
supersense-noun.food 0.6773* 7.15 67.72
supersense-noun.group 0.5650* 15.57 55.22
supersense-noun.location 0.5118* 7.81 55.64
supersense-noun.motive 0.3447* 0.62 50.00
supersense-noun.object 0.2276* 2.04 19.05
supersense-noun.person 0.6091* 15.74 61.25
supersense-noun.phenomenon 0.2955* 2.04 8.85
supersense-noun.plant 0.0358 0.21 13.33
supersense-noun.possession 0.5247* 6.67 47.62
supersense-noun.process 0.1292* 1.13 3.96
supersense-noun.quantity 0.4403* 4.92 36.11
supersense-noun.relation 0.2089* 2.34 11.94
supersense-noun.shape 0.0659* 0.31 1.55
supersense-noun.state 0.4877* 11.36 36.17
supersense-noun.substance 0.2411* 1.43 3.64
supersense-noun.time 0.5175* 10.99 51.43

ed
ge

-l
ev

el



pr
ot

or
ol

es



awareness 0.6715* 68.20 81.99
change-of-location 0.1061* 38.98 36.90
change-of-possession 0.0452 14.93 20.00
change-of-state 0.0448 42.59 37.21
change-of-state-continuous 0.0793 31.47 27.69
existed-after 0.3910* 93.33 95.58
existed-before 0.4802* 91.60 92.31
existed-during 0.3247* 98.31 98.61
instigation 0.3820* 74.48 76.77
partitive 0.0213 31.91 34.64
sentient 0.6494* 64.67 82.81
volition 0.5501* 63.79 79.86
was-for-benefit 0.2389* 59.87 62.11
was-used 0.1608* 86.64 89.00

macro-average 0.3433 37.20 50.66

Table 5: Pearson’s ρ, baseline F1, and model F1 for
each UDS attribute given gold test-set graph structures.

incorporate the matching scores between attributes.
Table 3 shows that a parser trained on seman-

tic subgraphs better recovers the subgraphs than
a parser trained on full graphs whose outputs are
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postprocessed to remove syntactic nodes. How-
ever, the fact that the parser trained on full graphs
achieves a higher Pearson’s ρ score indicates that
the inclusion of syntactic nodes may provide addi-
tional information for predicting UDS attributes.

In examining instances with an S score below
50, we observe two trends: the input sentences
are often ungrammatical, and for 63.82% (on the
validation set) the model predicts no output nodes.

While the pipeline system does well on model-
ing semantic graph structure, it is by its definition
unable to perform attribute parsing. In contrast, the
results presented in Tables 4 and 5 show that the
parser can jointly learn to produce semantic graphs
and annotate them with attributes.

Finally, we find that while weighting the loss
with the confidence scores has a small benefit in
the semantics-only setting, it hurts overall attribute
and structure prediction performance. This may be
due to the relatively small size of the UDS dataset,
which makes a strategy that is effectively weaken-
ing the loss signal at training time less effective.6

Figs. 3a-3c show the correlational strength co-
efficient between the true and predicted attributes
under a forced decode of the graph structure. It
is defined over property types indices j, k with
predicted attribute values νji and true values νj∗i as:

ψ(j, k) = tanh
(
1− |corr(νj − νj∗, νk − νk∗)|

|corr(νj∗, νk∗)|
)

where corr(νj∗, νk∗) is Pearson’s correlation coef-
ficient. Further details are given in Appendix A.
ψ(i, j) reflects how well the model captures the

strength of the correlations (either positive or nega-
tive) between two attribute types in the dataset: a
positive value indicates that the model captures the
correlation to some extent, with values closer to 1
implying better performance; a value of 0 indicates
that the model does not capture the correlation at
all, or that no significant interaction was present; a
negative value indicates that the model makes sys-
tematic mistakes while predicting the two variables,
e.g. when the model under-predicts the value of
property i, it also under-predicts property j’s value.
A Bonferroni-corrected non-parametric bootstrap
test (1000 replicants) was used for significance test-
ing, with failing pairs being said to not be reliably
different from 0 correlation.

Fig. 3a shows the model typically systemati-
cally under- or over-predicts the values for pairs

6All confidences are on [0, 1]
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Figure 3: ψ heatmaps for UDS1.0 attribute pairs

of argument-node attributes, with most ψ values
close to -1. However, we do see positive correla-
tions between some of the genericity annotations,
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Sentences Property (A) Ours (A) (B) Ours (B) (C) Ours (C)
(A) She was untrained and, awareness 3 3.04 1 3.69 5 3.68
in one botched job, killed a client. volition 2 2.92 1 3.45 5 3.44
(B) The antibody then kills the cell. instigation 5 3.08 5 3.39 5 3.37
(C) An assassin in Colombia killed sentience 5 2.99 1 3.71 5 3.70
a federal judge on a Medellin street. existed-after 5 3.57 2 3.79 5 3.78

Table 6: Comparison of gold properties from Reisinger et al. (2015) (on an ordinal scale from 1 to 5, with 3 as
“neutral”) and predicted properties (mapped to [1, 5]) for sentences involving the predicate “kills”.

as well as between genericity-arg-abstract, which
rates how conceptually abstract an argument is, and
the cognition wordsense, which applies to abstract
terms such as “doubts” and “thoughts”.

In Fig. 3b, we again observe several negative
ψ values; however, some positive correlations
can be seen between certain time properties, such
as duration-days, duration-weeks, and duration-
months, as well as more strongly positive ψ’s be-
tween certain genericity annotations. The positive
ψ between factuality and genericity-hypothetical
indicates the model has captured the commonalities
between predicates with these annotations.

In contrast to the node attributes, Fig. 3c shows
stronger results for edge attribute prediction, with
all significant ψ’s being positive, and related at-
tributes falling into clusters (e.g. volition, aware-
ness, sentience, or the existed attributes)

Qualitative examples Table 6 lists three sen-
tences from Reisinger et al. (2015) along with a
relevant subset of their original SPR properties and
values; the scale in Reisinger et al. was ordinal
from 1-5, with 1 corresponding to “very unlikely,”
5 to “very likely,” and 3 to “neutral.” Our model’s
predictions for the same sentences and properties
are given as well, mapped onto [1, 5]. We first note
that the structural component of the model is suffi-
ciently strong that the correct predicate-argument
edges were extracted during parsing, allowing for
a direct comparison between the annotations by
Reisinger et al. and the parser’s predictions. We
see that while for sentence (C), the model captures
at least the correct direction of the protorole annota-
tions, it overgeneralizes these results to (B), where
a more nuanced analysis is required. For (A), we
see that on most attributes the model captures the
desired binary direction of the inferences, but that it
fails on sentience. Overall, the model’s predictions
are weaker than the desired output, even when the
prediction is on the correct side of the midpoint,
3. This might help explain the disparity between
Pearson and F1 scores in Table 5, and represents

a direction for future work. Note that to obtain at-
tributes for (A) and (B), the threshold for the masks
β was dropped; ideally, this would not be required.

8 Conclusion

The scalar valued, multi-attribute nature of UDS
provides for a distinct structured prediction prob-
lem as compared to other existing representations.
We have demonstrated how a transductive parsing
paradigm that has achieved state-of-the-art results
on other representations can be adapted to UDS1.0
structures and attributes, and have provided proce-
dures for analysis, with the fine-grained nature of
UDS allowing for investigating novel correlations
and aspects of meaning. While UDS structures and
various attribute types have been modeled sepa-
rately (Vashishtha et al., 2019; Govindarajan et al.,
2019; White et al., 2016; Rudinger et al., 2018a,b;
Zhang et al., 2018), this work represents the first
time all of these attributes and structures have been
modeled jointly, and establishes a baseline for fu-
ture efforts on UDS1.0.

We envision future efforts exploring the inter-
actions between improving the underlying graph-
structure prediction and ever-better correlations to
human judgements on individual properties.
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A Derivation of ψ

The metric used in visualizations Fig. 3a-3c is given
by:

ψ(j, k) = tanh
(
1− |corr(νj − νj∗, νk − νk∗)|

|corr(νj∗, νk∗)|
)

where corr(νj − νj∗, νk − νk∗) and corr(νj∗, νk∗)
are defined as follows:

νj =
1

N

N∑
i=1

νji

Oj =
1

N

N∑
i=1

(νji − ν
j∗
i )2

corr(νj − νj∗, νk − νk∗) =
1
N

∑N
i=1

(
(νj∗i − ν

j
i )(ν

k∗
i − νki )

)√
Oj
√
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N

N∑
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1
N

∑N
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(
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)√
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Note that by this definition, ψ is effectively a ra-
tio of Pearson correlations, where the denominator
is exactly the Pearson correlation between νj∗ and
νk∗.


