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Abstract

Recent years have witnessed the burgeoning
of pretrained language models (LMs) for text-
based natural language (NL) understanding
tasks. Such models are typically trained on
free-form NL text, hence may not be suit-
able for tasks like semantic parsing over struc-
tured data, which require reasoning over both
free-form NL questions and structured tabular
data (e.g., database tables). In this paper we
present TABERT, a pretrained LM that jointly
learns representations for NL sentences and
(semi-)structured tables. TABERT is trained on
a large corpus of 26 million tables and their
English contexts. In experiments, neural se-
mantic parsers using TABERT as feature rep-
resentation layers achieve new best results on
the challenging weakly-supervised semantic
parsing benchmark WIKITABLEQUESTIONS,
while performing competitively on the text-to-
SQL dataset SPIDER.!

1 Introduction

Recent years have witnessed a rapid advance in the
ability to understand and answer questions about
free-form natural language (NL) text (Rajpurkar
et al., 2016), largely due to large-scale, pretrained
language models (LMs) like BERT (Devlin et al.,
2019). These models allow us to capture the syntax
and semantics of text via representations learned
in an unsupervised manner, before fine-tuning the
model to downstream tasks (Melamud et al., 2016;
McCann et al., 2017; Peters et al., 2018; Liu et al.,
2019b; Yang et al., 2019; Goldberg, 2019). It is
also relatively easy to apply such pretrained LMs
to comprehension tasks that are modeled as text
span selection problems, where the boundary of
an answer span can be predicted using a simple
classifier on top of the LM (Joshi et al., 2019).
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However, it is less clear how one could pretrain
and fine-tune such models for other QA tasks that
involve joint reasoning over both free-form NL text
and structured data. One example task is seman-
tic parsing for access to databases (DBs) (Zelle
and Mooney, 1996; Berant et al., 2013; Yih et al.,
2015), the task of transducing an NL utterance (e.g.,

“Which country has the largest GDP?”) into a struc-
tured query over DB tables (e.g., SQL querying a
database of economics). A key challenge in this
scenario is understanding the structured schema of
DB tables (e.g., the name, data type, and stored val-
ues of columns), and more importantly, the align-
ment between the input text and the schema (e.g.,
the token “GDP” refers to the Gross Domestic
Product column), which is essential for inferring
the correct DB query (Berant and Liang, 2014).

Neural semantic parsers tailored to this task
therefore attempt to learn joint representations of
NL utterances and the (semi-)structured schema
of DB tables (e.g., representations of its columns
or cell values, as in Krishnamurthy et al. (2017);
Bogin et al. (2019b); Wang et al. (2019a), inter
alia). However, this unique setting poses several
challenges in applying pretrained LMs. First, infor-
mation stored in DB tables exhibit strong underly-
ing structure, while existing LMs (e.g., BERT) are
solely trained for encoding free-form text. Sec-
ond, a DB table could potentially have a large
number of rows, and naively encoding all of them
using a resource-heavy LM is computationally in-
tractable. Finally, unlike most text-based QA tasks
(e.g., SQuUAD, Rajpurkar et al. (2016)) which could
be formulated as a generic answer span selection
problem and solved by a pretrained model with
additional classification layers, semantic parsing is
highly domain-specific, and the architecture of a
neural parser is strongly coupled with the structure
of its underlying DB (e.g., systems for SQL-based
and other types of DBs use different encoder mod-
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els). In fact, existing systems have attempted to
leverage BERT, but each with their own domain-
specific, in-house strategies to encode the struc-
tured information in the DB (Guo et al., 2019;
Zhang et al., 2019a; Hwang et al., 2019), and im-
portantly, without pretraining representations on
structured data. These challenges call for devel-
opment of general-purpose pretraining approaches
tailored to learning representations for both NL
utterances and structured DB tables.

In this paper we present TABERT, a pretraining
approach for joint understanding of NL text and
(semi-)structured tabular data (§ 3). TABERT is
built on top of BERT, and jointly learns contex-
tual representations for utterances and the struc-
tured schema of DB tables (e.g., a vector for each
utterance token and table column). Specifically,
TABERT linearizes the structure of tables to be
compatible with a Transformer-based BERT model.
To cope with large tables, we propose content snap-
shots, a method to encode a subset of table content
most relevant to the input utterance. This strat-
egy is further combined with a vertical attention
mechanism to share information among cell repre-
sentations in different rows (§ 3.1). To capture the
association between tabular data and related NL
text, TABERT is pretrained on a parallel corpus of
26 million tables and English paragraphs (§ 3.2).

TABERT can be plugged into a neural semantic
parser as a general-purpose encoder to compute
representations for utterances and tables. Our key
insight is that although semantic parsers are highly
domain-specific, most systems rely on representa-
tions of input utterances and the table schemas to
facilitate subsequent generation of DB queries, and
these representations can be provided by TABERT,
regardless of the domain of the parsing task.

We apply TABERT to two different semantic
parsing paradigms: (1) a classical supervised learn-
ing setting on the SPIDER text-to-SQL dataset (Yu
et al., 2018c), where TABERT is fine-tuned to-
gether with a task-specific parser using parallel
NL utterances and labeled DB queries (§ 4.1);
and (2) a challenging weakly-supervised learning
benchmark WIKITABLEQUESTIONS (Pasupat and
Liang, 2015), where a system has to infer latent
DB queries from its execution results (§ 4.2). We
demonstrate TABERT is effective in both scenar-
ios, showing that it is a drop-in replacement of a
parser’s original encoder for computing contextual
representations of NL utterances and DB tables.

Specifically, systems augmented with TABERT out-
performs their counterparts using BERT, register-
ing state-of-the-art performance on WIKITABLE-
QUESTIONS, while performing competitively on
SPIDER (§ 5).

2 Background

Semantic Parsing over Tables Semantic pars-
ing tackles the task of translating an NL utterance
u into a formal meaning representation (MR) z.
Specifically, we focus on parsing utterances to ac-
cess database tables, where z is a structured query
(e.g., an SQL query) executable on a set of rela-
tional DB tables 7 = {7}}. A relational table T is
a listing of N rows {R;}, of data, with each row
R; consisting of M cells {s; ;) }jj\il, one for each
column c;. Each cell s; ;y contains a list of tokens.
Depending on the underlying data representation
schema used by the DB, a table could either be fully
structured with strongly-typed and normalized con-
tents (e.g., a table column named distance has a
unit of kilometers, with all of its cell values, like
200, bearing the same unit), as is commonly the
case for SQL-based DBs (§ 4.1). Alternatively, it
could be semi-structured with unnormalized, tex-
tual cell values (e.g., 200 km, § 4.2). The query
language could also take a variety of forms, from
general-purpose DB access languages like SQL to
domain-specific ones tailored to a particular task.
Given an utterance and its associated tables, a
neural semantic parser generates a DB query from
the vector representations of the utterance tokens
and the structured schema of tables. In this paper
we refer schema as the set of columns in a table,
and its representation as the list of vectors that
represent its columns”. We will introduce how
TABERT computes these representations in § 3.1.

Masked Language Models Given a sequence
of NL tokens * = x1,z9,...,x,, a masked
language model (e.g., BERT) is an LM trained
using the masked language modeling objective,
which aims to recover the original tokens in @
from a “corrupted” context created by randomly
masking out certain tokens in x. Specifically, let
Tm = {xi,..., 2, } be the subset of tokens in
x selected to be masked out, and Z denote the
masked sequence with tokens in «x,, replaced by a
[MASK] symbol. A masked LM defines a distribu-

’Column representations for more complex schemas, e.g.,
those capturing inter-table dependency via primary and foreign
keys, could be derived from these table-wise representations.
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Figure 1: Overview of TABERT for learning representations of utterances and table schemas with an example from WIKITABLE-
QUESTIONS®. (A) A content snapshot of the table is created based on the input NL utterance. (B) Each row in the snapshot is
encoded by a Transformer (only R2 is shown), producing row-wise encodings for utterance tokens and cells. (C) All row-wise

encodings are aligned and processed by V' vertical self-attention layers, generating utterance and column representations.

tion pg(x,,|x) over the target tokens x,,, given the
masked context .

BERT parameterizes pg(x,,|®) using a Trans-
former model. During the pretraining phase, BERT
maximizes pg(x,|x) on large-scale textual cor-
pora. In the fine-tuning phase, the pretrained model
is used as an encoder to compute representations
of input NL tokens, and its parameters are jointly
tuned with other task-specific neural components.

3 TABERT: Learning Joint Representa-
tions over Textual and Tabular Data

We first present how TABERT computes represen-
tations for NL utterances and table schemas (§ 3.1),
and then describe the pretraining procedure (§ 3.2).

3.1 Computing Representations for NL
Utterances and Table Schemas

Fig. 1 presents a schematic overview of TABERT.
Given an utterance u and a table T', TABERT first
creates a content snapshot of T'. This snapshot
consists of sampled rows that summarize the infor-
mation in 7" most relevant to the input utterance.
The model then linearizes each row in the snap-
shot, concatenates each linearized row with the
utterance, and uses the concatenated string as in-
put to a Transformer (e.g., BERT) model, which
outputs row-wise encoding vectors of utterance to-
kens and cells. The encodings for all the rows in

3Example adapted from stanford.io/381Z8Pf

the snapshot are fed into a series of vertical self-
attention layers, where a cell representation (or an
utterance token representation) is computed by at-
tending to vertically-aligned vectors of the same
column (or the same NL token). Finally, represen-
tations for each utterance token and column are
generated from a pooling layer.

Content Snapshot One major feature of
TABERT is its use of the table contents, as opposed
to just using the column names, in encoding the
table schema. This is motivated by the fact that
contents provide more detail about the semantics
of a column than just the column’s name, which
might be ambiguous. For instance, the Venue
column in Fig. 1 which is used to answer the
example question actually refers to host cities, and
encoding the sampled cell values while creating its
representation may help match the term “city” in
the input utterance to this column.

However, a DB table could potentially have a
large number of rows, with only few of them actu-
ally relevant to answering the input utterance. En-
coding all of the contents using a resource-heavy
Transformer is both computationally intractable
and likely not necessary. Thus, we instead use a
content snapshot consisting of only a few rows that
are most relevant to the input utterance, providing
an efficient approach to calculate content-sensitive
column representations from cell values.

We use a simple strategy to create content snap-

8415


https://stanford.io/38iZ8Pf

shots of K rows based on the relevance between
the utterance and a row. For K > 1, we select the
top-K rows in the input table that have the high-
est n-gram overlap ratio with the utterance.* For
K = 1, to include in the snapshot as much informa-
tion relevant to the utterance as possible, we create
a synthetic row by selecting the cell values from
each column that have the highest n-gram overlap
with the utterance. Using synthetic rows in this
restricted setting is motivated by the fact that cell
values most relevant to answer the utterance could
come from multiple rows. As an example, con-
sider the utterance “How many more participants
were there in 2008 than in the London Olympics?”,
and an associating table with columns Year, Host
City and Number of Participants, the most
relevant cells to the utterance, 2008 (from Year)
and London (from Host City), are from different
rows, which could be included in a single synthetic
row. In the initial experiments we found synthetic
rows also help stabilize learning.

Row Linearization TABERT creates a linearized
sequence for each row in the content snapshot as
input to the Transformer model. Fig. 1(B) depicts
the linearization for Rs, which consists of a con-
catenation of the utterance, columns, and their cell
values. Specifically, each cell is represented by the
name and data type® of the column, together with
its actual value, separated by a vertical bar. As an
example, the cell 55 1y valued 2005 in Ry in Fig. 1
is encoded as

Year | real | 2005 D
——— —— ——
Column Name Column Type Cell Value

The linearization of a row is then formed by con-
catenating the above string encodings of all the
cells, separated by the [SEP] symbol. We then
prefix the row linearization with utterance tokens
as input sequence to the Transformer.

Existing works have applied different lineariza-
tion strategies to encode tables with Transform-
ers (Hwang et al., 2019; Chen et al., 2019), while
our row approach is specifically designed for en-
coding content snapshots. We present in § 5 results
with different linearization choices.

*We use n < 3 in our experiments. Empirically this
simple matching heuristic is able to correctly identify the
best-matched rows for 40 out of 50 sampled examples on
WIKITABLEQUESTIONS.

SWe use two data types, text, and real for numbers, pre-
dicted by majority voting over the NER labels of cell tokens.

Vertical Self-Attention Mechanism The base
Transformer model in TABERT outputs vector en-
codings of utterance and cell tokens for each row.
These row-level vectors are computed separately
and therefore independent of each other. To allow
for information flow across cell representations of
different rows, we propose vertical self-attention, a
self-attention mechanism that operates over verti-
cally aligned vectors from different rows.

As in Fig. 1(C), TABERT has V stacked vertical-
level self-attention layers. To generate aligned in-
puts for vertical attention, we first compute a fixed-
length initial vector for each cell at position (i, j),
which is given by mean-pooling over the sequence
of the Transformer’s output vectors that correspond
to its variable-length linearization as in Eq. (1).
Next, the sequence of word vectors for the NL
utterance (from the base Transformer model) are
concatenated with the cell vectors as initial inputs
to the vertical attention layer.

Each vertical attention layer has the same param-
eterization as the Transformer layer in (Vaswani
et al., 2017), but operates on vertically aligned el-
ements, i.e., utterance and cell vectors that corre-
spond to the same question token and column, re-
spectively. This vertical self-attention mechanism
enables the model to aggregate information from
different rows in the content snapshot, allowing
TABERT to capture cross-row dependencies on cell
values.

Utterance and Column Representations A
representation c; is computed for each column ¢;
by mean-pooling over its vertically aligned cell
vectors, {s; ;) : I; in content snapshot}, from the
last vertical layer. A representation for each ut-
terance token, x;, is computed similarly over the
vertically aligned token vectors. These representa-
tions will be used by downstream neural semantic
parsers. TABERT also outputs an optional fixed-
length table representation T using the representa-
tion of the prefixed [CLS] symbol, which is useful
for parsers that operate on multiple DB tables.

3.2 Pretraining Procedure

Training Data Since there is no large-scale,
high-quality parallel corpus of NL text and struc-
tured tables, we instead use semi-structured tables
that commonly exist on the Web as a surrogate
data source. As a first step in this line, we fo-
cus on collecting parallel data in English, while
extending to multilingual scenarios would be an
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interesting avenue for future work. Specifically,
we collect tables and their surrounding NL text
from English Wikipedia and the WDC WebTable
Corpus (Lehmberg et al., 2016), a large-scale table
collection from CommonCrawl. The raw data is
extremely noisy, and we apply aggressive cleaning
heuristics to filter out invalid examples (e.g., exam-
ples with HTML snippets or in foreign languages,
and non-relational tables without headers). See
Appendix § A.1 for details of data pre-processing.
The pre-processed corpus contains 26.6 million
parallel examples of tables and NL sentences. We
perform sub-tokenization using the Wordpiece tok-
enizer shipped with BERT.

Unsupervised Learning Objectives We apply
different objectives for learning representations of
the NL context and structured tables. For NL con-
texts, we use the standard Masked Language Mod-
eling (MLM) objective (Devlin et al., 2019), with a
masking rate of 15% sub-tokens in an NL context.

For learning column representations, we design
two objectives motivated by the intuition that a
column representation should contain both the gen-
eral information of the column (e.g., its name and
data type), and representative cell values relevant
to the NL context. First, a Masked Column Pre-
diction (MCP) objective encourages the model
to recover the names and data types of masked
columns. Specifically, we randomly select 20% of
the columns in an input table, masking their names
and data types in each row linearization (e.g., if
the column Year in Fig. 1 is selected, the tokens
Year and real in Eq. (1) will be masked). Given
the column representation ¢;, TABERT is trained to
predict the bag of masked (name and type) tokens
from c; using a multi-label classification objective.
Intuitively, MCP encourages the model to recover
column information from its contexts.

Next, we use an auxiliary Cell Value Recovery
(CVR) objective to ensure information of represen-
tative cell values in content snapshots is retained
after additional layers of vertical self-attention.
Specifically, for each masked column c; in the
above MCP objective, CVR predicts the original
tokens of each cell 8(i,5) (of ¢;) in the content snap-
shot conditioned on its cell vector s<i7j>.6 For in-
stance, for the example cell s(; 1) in Eq. (1), we
predict its value 2005 from s 1y. Since a cell

The cell value tokens are not masked in the input se-
quence, since predicting masked cell values is challenging
even with the presence of its surrounding context.

could have multiple value tokens, we apply the
span-based prediction objective (Joshi et al., 2019).
Specifically, to predict a cell token s(; jy, € 5(; 5y,
its positional embedding ey, and the cell represen-
tations s; ;) are fed into a two-layer network f(:)
with GeLU activations (Hendrycks and Gimpel,
2016). The output of f(-) is then used to predict the
original value token s; ;) from a softmax layer.

4 Example Application: Semantic

Parsing over Tables

We apply TABERT for representation learning on
two semantic parsing paradigms, a classical super-
vised text-to-SQL task over structured DBs (§ 4.1),
and a weakly supervised parsing problem on semi-
structured Web tables (§ 4.2).

4.1 Supervised Semantic Parsing

Benchmark Dataset Supervised learning is the
typical scenario of learning a parser using parallel
data of utterances and queries. We use SPIDER (Yu
et al., 2018c), a text-to-SQL dataset with 10,181
examples across 200 DBs. Each example consists
of an utterance (e.g., “What is the total number
of languages used in Aruba?”), a DB with one
or more tables, and an annotated SQL query,
which typically involves joining multiple tables
to get the answer (e.g., SELECT COUNT(*) FROM
Country JOIN Lang ON Country.Code =

Lang.CountryCode WHERE Name = ‘Aruba’).

Base Semantic Parser We aim to show TABERT
could help improve upon an already strong parser.
Unfortunately, at the time of writing, none of the
top systems on SPIDER were publicly available. To
establish a reasonable testbed, we developed our
in-house system based on TranX (Yin and Neubig,
2018), an open-source general-purpose semantic
parser. TranX translates an NL utterance into an
intermediate meaning representation guided by a
user-defined grammar. The generated intermediate
MR could then be deterministically converted to
domain-specific query languages (e.g., SQL).

We use TABERT as encoder of utterances and
table schemas. Specifically, for a given utterance
u and a DB with a set of tables T = {T}}, we
first pair u with each table T} in T as inputs to
TABERT, which generates | 7| sets of table-specific
representations of utterances and columns. At each
time step, an LSTM decoder performs hierarchical
attention (Libovicky and Helcl, 2017) over the list
of table-specific representations, constructing an
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MR based on the predefined grammar. Following
the IRNet model (Guo et al., 2019) which achieved
the best performance on SPIDER as the time of
writing, we use SemQL, a simplified version of
the SQL, as the underlying grammar. We refer
interested readers to Appendix § B.1 for details of
our system.

4.2 Weakly Supervised Semantic Parsing

Benchmark Dataset Weakly supervised seman-
tic parsing considers the reinforcement learning
task of inferring the correct query from its execu-
tion results (i.e., whether the answer is correct).
Compared to supervised learning, weakly super-
vised parsing is significantly more challenging, as
the parser does not have access to the labeled query,
and has to explore the exponentially large search
space of possible queries guided by the noisy bi-
nary reward signal of execution results.

WIKITABLEQUESTIONS (Pasupat and Liang,
2015) is a popular dataset for weakly supervised
semantic parsing, which has 22,033 utterances and
2,108 semi-structured Web tables from Wikipedia.’
Compared to SPIDER, examples in this dataset do
not involve joining multiple tables, but typically
require compositional, multi-hop reasoning over a
series of entries in the given table (e.g., to answer
the example in Fig. 1 the parser needs to reason
over the row set { Ry, R3, R5}, locating the Venue
field with the largest value of Year).

Base Semantic Parser MAPO (Liang et al.,
2018) is a strong system for weakly supervised
semantic parsing. It improves the sample efficiency
of the REINFORCE algorithm by biasing the ex-
ploration of queries towards the high-rewarding
ones already discovered by the model. MAPO uses
a domain-specific query language tailored to an-
swering compositional questions on single tables,
and its utterances and column representations are
derived from an LSTM encoder, which we replaced
with our TABERT model. See Appendix § B.2 for
details of MAPO and our adaptation.

S Experiments

In this section we evaluate TABERT on downstream
tasks of semantic parsing to DB tables.

"While some of the 421 testing Wikipedia tables might be
included in our pretraining corpora, they only account for a
very tiny fraction. In our pilot study, we also found pretraining
only on Wikipedia tables resulted in worse performance.

Pretraining Configuration We train two vari-
ants of the model, TABERTgase and TABERTLarge,
with the underlying Transformer model initial-
ized with the uncased versions of BERTgase and
BERTLarge, respectively.® During pretraining, for
each table and its associated NL context in the
corpus, we create a series of training instances of
paired NL sentences (as synthetically generated ut-
terances) and tables (as content snapshots) by (1)
sliding a (non-overlapping) context window of sen-
tences with a maximum length of 128 tokens, and
(2) using the NL tokens in the window as the utter-
ance, and pairing it with randomly sampled rows
from the table as content snapshots. TABERT is
implemented in PyTorch using distributed training.
Refer to Appendix § A.2 for details of pretraining.

Comparing Models We mainly present results
for two variants of TABERT by varying the
size of content snapshots K. TABERT(K = 3)
uses three rows from input tables as content
snapshots and three vertical self-attention layers.
TABERT(K = 1) uses one synthetically generated
row as the content snapshot as described in § 3.1.
Since this model does not have multi-row input, we
do not use additional vertical attention layers (and
the cell value recovery learning objective). Its col-
umn representation c; is defined by mean-pooling
over the Transformer’s output encodings that corre-
spond to the column name (e.g., the representation
for the Year column in Fig. 1 is derived from the
vector of the Year token in Eq. (1)). We find this
strategy gives better results compared with using
the cell representation s; as c;. We also compare
with BERT using the same row linearization and
content snapshot approach as TABERT(K = 1),
which reduces to a TABERT(K = 1) model with-
out pretraining on tabular corpora.

Evaluation Metrics As standard, we report exe-
cution accuracy on WIKITABLEQUESTIONS and
exact-match accuracy of DB queries on SPIDER.

5.1 Main Results

Tab. 1 and Tab. 2 summarize the end-to-end evalua-
tion results on WIKITABLEQUESTIONS and SPI-
DER, respectively. First, comparing with existing
strong semantic parsing systems, we found our

8We also attempted to train TABERT on our collected cor-
pus from scratch without initialization from BERT, but with
inferior results, potentially due to the average lower quality of
web-scraped tables compared to purely textual corpora. We
leave improving the quality of training data as future work.
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Previous Systems on WikiTableQuestions

Top-ranked Systems on Spider Leaderboard

Model DEV TEST Model DEV. Acc.
Pasupat and Liang (2015) 37.0 37.1 Global-GNN (Bogin et al., 2019a) 527
Neelakantan et al. (2016) 34.1 34.2 EditSQL + BERT (Zhang et al., 2019a) 57.6
Ensemble 15 Models 375 377 RatSQL (Wang et al.. 2019a) 0.9
Zhang et al. (2017) 40.6 43.7 IRNet + BERT (Guo et al., 2019) 603
Dasigi et al. (2019) 43.1 443 - :
Agarwal et al. (2019) 432 4.1 + Memory + Coarse-to-Fine 61.9
Ensemble 10 Models - 46.9 IRNet V2 + BERT 63.9
Wang et al. (2019b) 437 44.5 RyanSQL + BERT (Choi et al., 2020) 66.6
Our System based on MAPO (Liang et al., 2018) Our System based on TranX (Yin and Neubig, 2018)
DEV Best TEST Best Mean Best
BaseParser’ 42303 427 431205 438 4/ BERTp,g (K=1)  61.8+08 624
w/ BERTgage (K = 1) 49.6 0.5 504 49.4 +o5 492 — content snapshot 50.6 +0.7 60.3
— content snapshot 49.1 06 50.0 48.8 +0.9 50.2 _
1) TABERTgaoe (K = 1) 512205 516 504405 5lo 0/ TABERTmase (K=1) 633206 642
— content snapshot 499 <04 50.3 49.4 404  50.0 — content snapshot 604 +13 618
w/ TABERTgase (K = 3) 516405 524 Sldios 513 W/ TABERTmase (K=3) 633407 641
‘w/ BERTLarge (K=1)  50.3+04 50.8 49.6+05 50.1 w/ BERTLarge (K = 1) 61.3 £1.2 62.9
w/ TABERT arge (K =1) 51.6+11 527 512409 515  w/ TABERTLarge (K=1) 64.0 +0.4 64.4
w/ TABERTLarge (K =3) 522+07 53.0 51.8+06 523 w/ TABERTLarge (K =3) 64.5+06 65.2

Table 1: Execution accuracies on WIKITABLEQUESTIONS.
fResults from Liang et al. (2018). (TA)BERT models are
evaluated with 10 random runs. We report mean, standard
deviation and the best results. TEST—BEST refers to the
result from the run with the best performance on DEV. set.

parsers with TABERT as the utterance and table
encoder perform competitively. On the test set of
WIKITABLEQUESTIONS, MAPO augmented with
a TABERTLarge model with three-row content snap-
shots, TABERTLarge(K = 3), registers a single-
model exact-match accuracy of 52.3%, surpassing
the previously best ensemble system (46.9%) from
Agarwal et al. (2019) by 5.4% absolute.

On SPIDER, our semantic parser based on TranX
and SemQL (§ 4.1) is conceptually similar to the
base version of IRNet as both systems use the
SemQL grammar, while our system has a simpler
decoder. Interestingly, we observe that its perfor-
mance with BERTgase (61.8%) matches the full
BERT-augmented IRNet model with a stronger de-
coder using augmented memory and coarse-to-fine
decoding (61.9%). This confirms that our base
parser is an effective baseline. Augmented with rep-
resentations produced by TABERTLarge (K = 3),
our parser achieves up to 65.2% exact-match ac-
curacy, a 2.8% increase over the base model us-
ing BERTg,5.. Note that while other competitive
systems on the leaderboard use BERT with more
sophisticated semantic parsing models, our best
DEV. result is already close to the score registered
by the best submission (RyanSQL+BERT). This
suggests that if they instead used TABERT as the
representation layer, they would see further gains.

Comparing semantic parsers augmented with

Table 2: Exact match accuracies on the public development
set of SPIDER. Models are evaluated with 5 random runs.

TABERT and BERT, we found TABERT is more
effective across the board. We hypothesize that the
performance improvements would be attributed by
two factors. First, pre-training on large parallel
textual and tabular corpora helps TABERT learn
to encode structure-rich tabular inputs in their lin-
earized form (Eq. (1)), whose format is different
from the ordinary natural language data that BERT
is trained on. Second, pre-training on parallel data
could also helps the model produce representations
that better capture the alignment between an utter-
ance and the relevant information presented in the
structured schema, which is important for semantic
parsing.

Overall, the results on the two benchmarks
demonstrate that pretraining on aligned textual and
tabular data is necessary for joint understanding of
NL utterances and tables, and TABERT works well
with both structured (SPIDER) and semi-structured
(WIKITABLEQUESTIONS) DBs, and agnostic of
the task-specific structures of semantic parsers.

Effect of Content Snapshots In this paper we
propose using content snapshots to capture the in-
formation in input DB tables that is most relevant
to answering the NL utterance. We therefore study
the effectiveness of including content snapshots
when generating schema representations. We in-
clude in Tab. 1 and Tab. 2 results of models with-
out using content in row linearization (‘“‘—content
snapshot”). Under this setting a column is rep-
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u: How many years before was the film Bacchae out before the Watermelon? Cell Linearization Template WIKIQ. SPIDER
Input to TABERTarge (K = 3) & Content Snapshot with Three Rows Pretrained TABERTgase Models (K = 1)

Fim Year  Function ~ Notess Column Name 49.6 +04 60.0 £1.1
The Bacchae 2002 | Producer Screen adaptation of... Column Name | TypeT (—content snap.) 49.9 +0.4 60.4 +1.3
The Trojan Women | 2004 | Producer/Actress | Documutary film... Column Name | Type | Cell Valuef 512405 63.3 406
The Watermelon 2008 | Producer Oddball romantic comedy... T TT *BE]ET*B;S;M(;JCI*S **************
Input to TABERTLarge (K = 1) > Content Snapshot with One Synthetic Row Column Name (Hwang et al., 2019) 49.0 +0.4 58.6 +0.3
Film | Year | Function | Notes Column Name is Cell Value (Chenl9) 502404 63.1 0.7

The Watermelon 2013 | Producer Screen adaptation of...

Table 3: Content snapshots generated by two models for
a WIKITABLEQUESTIONS DEV. example. Matched tokens
between the question and content snapshots are underlined.

resented as “Column Name | Type” without cell
values (c.f., Eq. (1)). We find that content snap-
shots are helpful for both BERT and TABERT, es-
pecially for TABERT. As discussed in § 3.1, encod-
ing sampled values from columns in learning their
representations helps the model infer alignments
between entity and relational phrases in the utter-
ance and the corresponding column. This is par-
ticularly helpful for identifying relevant columns
from a DB table that is mentioned in the input utter-
ance. As an example, empirically we observe that
on SPIDER our semantic parser with TABERTgase
using just one row of content snapshots (K = 1)
registers a higher accuracy of selecting the cor-
rect columns when generating SQL queries (e.g.,
columns in SELECT and WHERE clauses), compared
to the TABERTg,se model without encoding con-
tent information (87.4% v.s. 86.4%).

Additionally, comparing TABERT using one syn-

thetic row (K = 1) and three rows from input ta-
bles (K = 3) as content snapshots, the latter gen-
erally performs better. Intuitively, encoding more
table contents relevant to the input utterance could
potentially help answer questions that involve rea-
soning over information across multiple rows in the
table. Tab. 3 shows such an example, and to answer
this question a parser need to subtract the values
of Year in the rows for “The Watermelon” and
“The Bacchae”. TABERTLarge (K = 3) is able to
capture the two target rows in its content snap-
shot and generates the correct DB query, while the
TABERTLarge (K = 1) model with only one row as
content snapshot fails to answer this example.

Effect of Row Linearization TABERT uses row
linearization to represent a table row as sequential
input to Transformer. Tab. 4 (upper half) presents
results using various linearization methods. We
find adding type information and content snapshots
improves performance, as they provide more hints
about the meaning of a column.

Table 4: Performance of pretrained TABERTgase models and
BERTzase On the DEV. sets with different linearization meth-
ods. Slot names are underlined. TResults copied from Tab. 1
and Tab. 2.

Learning Objective = WIKIQ.  SPIDER
MCP only 51.6 +0.7  62.6 +0.7
MCP + CVR 51.6 +0.5  63.3 +0.7

Table 5: Performance of pretrained TABERTgase (K = 3) on
DEV. sets with different pretraining objectives.

We also compare with existing linearization
methods in literature using a TABERTg,se model,
with results shown in Tab. 4 (lower half). Hwang
etal. (2019) uses BERT to encode concatenated col-
umn names to learn column representations. In line
with our previous discussion on the effectiveness
content snapshots, this simple strategy without en-
coding cell contents underperforms (although with
TABERTg,se pretrained on our tabular corpus the
results become slightly better). Additionally, we re-
mark that linearizing table contents has also be ap-
plied to other BERT-based tabular reasoning tasks.
For instance, Chen et al. (2019) propose a “natu-
ral” linearization approach for checking if an NL
statement entails the factual information listed in a
table using a binary classifier with representations
from BERT, where a table is linearized by concate-
nating the semicolon-separated cell linearization
for all rows. Each cell is represented by a phrase
“column name is cell value”. For complete-
ness, we also tested this cell linearization approach,
and find BERTg,se achieved improved results. We
leave pretraining TABERT with this linearization
strategy as promising future work.

Impact of Pretraining Objectives TABERT
uses two objectives (§ 3.2), a masked column pre-
diction (MCP) and a cell value recovery (CVR) ob-
jective, to learn column representations that could
capture both the general information of the column
(via MCP) and its representative cell values related
to the utterance (via CVR). Tab. 5 shows ablation
results of pretraining TABERT with different ob-
jectives. We find TABERT trained with both MCP
and the auxiliary CVR objectives gets a slight ad-
vantage, suggesting CVR could potentially lead to
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more representative column representations with
additional cell information.

6 Related Works

Semantic Parsing over Tables Tables are impor-
tant media of world knowledge. Semantic parsers
have been adapted to operate over structured DB
tables (Wang et al., 2015; Xu et al., 2017; Dong
and Lapata, 2018; Yu et al., 2018b; Shi et al.,
2018; Wang et al., 2018), and open-domain, semi-
structured Web tables (Pasupat and Liang, 2015;
Sun et al., 2016; Neelakantan et al., 2016). To
improve representations of utterances and tables
for neural semantic parsing, existing systems have
applied pretrained word embeddings (e.g.., GloVe,
as in Zhong et al. (2017); Yu et al. (2018a); Sun
et al. (2018); Liang et al. (2018)), and BERT-family
models for learning joint contextual representations
of utterances and tables, but with domain-specific
approaches to encode the structured information in
tables (Hwang et al., 2019; He et al., 2019; Guo
et al., 2019; Zhang et al., 2019a). TABERT ad-
vances this line of research by presenting a general-
purpose, pretrained encoder over parallel corpora
of Web tables and NL context. Another relevant
direction is to augment representations of columns
from an individual table with global information of
its linked tables defined by the DB schema (Bogin
et al., 2019a; Wang et al., 2019a). TABERT could
also potentially improve performance of these sys-
tems with improved table-level representations.

Knowledge-enhanced Pretraining Recent pre-
training models have incorporated structured in-
formation from knowledge bases (KBs) or other
structured semantic annotations into training con-
textual word representations, either by fusing vec-
tor representations of entities and relations on KBs
into word representations of LMs (Peters et al.,
2019; Zhang et al., 2019b,c), or by encouraging
the LM to recover KB entities and relations from
text (Sun et al., 2019; Liu et al., 2019a). TABERT
is broadly relevant to this line in that it also exposes
an LM with structured data (i.e., tables), while aim-
ing to learn joint representations for both textual
and structured tabular data.

7 Conclusion and Future Work

We present TABERT, a pretrained encoder for
joint understanding of textual and tabular data.
We show that semantic parsers using TABERT
as a general-purpose feature representation layer

achieved strong results on two benchmarks. This
work also opens up several avenues for future work.
First, we plan to evaluate TABERT on other re-
lated tasks involving joint reasoning over textual
and tabular data (e.g., table retrieval and table-to-
text generation). Second, following the discussions
in § 5, we will explore other table linearization
strategies with Transformers, improving the quality
of pretraining corpora, as well as novel unsuper-
vised objectives. Finally, to extend TABERT to
cross-lingual settings with utterances in foreign
languages and structured schemas defined in En-
glish, we plan to apply more advanced semantic
similarity metrics for creating content snapshots.
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Supplementary Materials

A Pretraining Details

A.1 Training Data

We collect parallel examples of tables and their
surrounding NL sentences from two sources:

Wikipedia Tables We extract all the tables on
English Wikipedia®. For each table, we use the
preceding three paragraphs as the NL context, as
we observe that most Wiki tables are located after
where they are described in the body text.

WDC WebTable Corpus (Lehmberg et al.,
2016) is a large collection of Web tables extracted
from the Common Crawl Web scrape'®. We use
its 2015 English-language relational subset, which
consists of 50.8 million relational tables and their
surrounding NL contexts.

Preprocessing Our dataset is collected from ar-
bitrary Web tables, which are extremely noisy. We
develop a set of heuristics to clean the data by: (1)
removing columns whose names have more than
10 tokens; (2) filtering cells with more than two
non-ASCII characters or 20 tokens; (3) removing
empty or repetitive rows and columns; (4) filtering
tables with less than three rows and four columns,
and (5) running spaCy to identify the data type
of columns (text or real value) by majority voting
over the NER labels of column tokens, (6) rotating
vertically oriented tables. We sub-tokenize the cor-
pus using the Wordpiece tokenizer in Devlin et al.
(2019). The pre-processing results in 1.3 million
tables from Wikipedia and 25.3 million tables from
the WDC corpus.

A.2 Pretraining Setup

As discussed in § 5, we create training instances of
NL sentences (as synthetic utterances) and content
snapshots from tables by sampling from the parallel
corpus of NL contexts and tables. Each epoch con-
tains 37.6M training instances. We train TABERT
for 10 epochs. Tab. 6 lists the hyper-parameters
used in training. Learning rates are validated on the
development set of WIKITABLEQUESTIONS. We
use a batch size of 512 for large models to reduce
training time. The training objective is sum of the
three pretraining objectives in § 3.2: the masked

“We do not use infoboxes (tables on the top-right of a Wiki
page that describe properties of the main topic), as they are
not relational tables.

""http://webdatacommons . org/webtables

language modeling (MLM) objective for utterance
tokens, the masked column prediction (MCP) ob-
jective for columns, and the column value recovery
(CVR) objective for their cell values. An exception
is pretraining the TABERT(K = 1) models. Since
there are no additional vertical attention layers, we
do not use the CVR objective, and the MCP ob-
jective reduces to the vanilla MLLM objective over
encodings from the base Transformer model. Our
largest model TABERT g (K = 3) takes six days
to train for 10 epochs on 128 Tesla V100 GPUs
using mixed precision training.

B Semantic Parsers

B.1 Supervised Parsing on SPIDER

Model We develop our text-to-SQL parser based
on TranX (Yin and Neubig, 2018), which trans-
lates an NL utterance into a tree-structured abstract
meaning representation following user-specified
grammar, before deterministically convert the gen-
erated abstract MR into an SQL query. TranX mod-
els the construction process of an abstract MR (tree-
structured representation of an SQL query) using a
transition-based system, which decomposes its gen-
eration story into a sequence of actions following
the user defined grammar.

Formally, given an input NL utterance u and a
database with a set of tables 7 = {7}, the prob-
ability of generating of an SQL query (i.e., its se-
mantically equivalent MR) z is decomposed as the
production of action probabilities:

p(Z|U,T) = Hp(at|a<t7u>7-) (2)

where a; is the action applied to the hypothe-
sis at time stamp t. a; denote the previous ac-
tion history. We refer readers to Yin and Neu-
big (2018) for details of the transition system and
how individual action probabilities are computed.
In our adaptation of TranX to text-to-SQL pars-
ing on SPIDER, we follow Guo et al. (2019) and
use SemQL as the underlying grammar, which
is a simplification of the SQL language. Fig. 2
lists the SemSQL grammar specified using the ab-
stract syntax description language (Wang et al.,
1997). Intuitively, the generation starts from a tree-
structured derivation with the root production rule
select_stmt—SelectStatement, which lays
out overall the structure of an SQL query. At each
time step, the decoder algorithm locates the current
opening node on the derivation tree, following a
depth-first, left-to-right order. If the opening node
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Parameter TABERTgase (K = 1) TABERTLarge(K =1) TABERTgase(K =3) TABERTLarge(K =3)
Batch Size 256 512 512 512
Learning Rate 2x107° 2x107° 4x107° 4x107°

Max Epoch 10

Weight Decay 0.01

Gradient Norm Clipping 1.0

Table 6: Hyper-parameters using in pretraining

is not a leaf node, the decoder invokes an action
a; which expands the opening node using a pro-
duction rule with appropriate type. If the current
opening node is a leaf node (e.g., a node denot-
ing string literal), the decoder fills in the leaf node
using actions that emit terminal values.

To use such a transition system to generate SQL
queries, we extend its action space with two new
types of actions, SELECTTABLE(T;) for node of
type table_ref in Fig. 2, which selects a table
T; (e.g., for predicting target tables for a FROM
clause), and SELECTCOLUMN(Tj}, ¢;) for node of
type column_ref, which selects the column c;
from table T; (e.g., for predicting a result column
used in the SELECT clause).

As described in § 4.1, TABERT produces a list of
entries, with one entry (T;, X;, C;) for each table
T

M = {<T“X1 = {Xl,XQ, .. .},

-

Ci = {Cl, Coy ...y }>i}i—1 (3)
where each entry (T;, X;, C;) in M consists of T,
the representation of table 7; given by the output
vector of the prefixed [CLS] symbol, the table-
specific representations of utterance tokens X; =
{x1,X2,...}, and representations of columns in
T;, C; = {ci1,ca,...}. Ateach time step ¢, the
decoder in TranX performs hierarchical attention
over representations in M to compute a context vec-
tor. First, a table-wise attention score is computed
using the LSTM’s previous state, state;_; with the
set of table representations.

score(T;) = Softmax(

DotProduct(state;_1, key(Ti))) , 4)

where the linear projection key(-) € R projects
the table representations to key space. Next, for
each table T; € 7T, a table-wise context vector
ctx(T;) is generated by attending over the union

of vectors in utterance token representations X;
and column representations C;:

ctx(T;) = DotProductAttention(

state;_1, key(X; U C;), value(X; U Ci)), 5)

with the LSTM state as the query, key(-) as the key,
and another linear transformation value(-) € R?%6
to project the representations to value vectors. The
final context vector is then given by the weighted
sum of these table-wise context vectors ctx(7;)
(i € {1,...,|T|}) weighted by the attention scores
score(T;). The generated context vector is then
used to update the state of the decoder LSTM to
state;.

The updated decoder state is then used to com-
pute the probability of carrying out the action de-
fined at time step ¢, a;. For a SELECTTABLE(T;)
action, its probability of is defined similarly as
Eq. (4). For a SELECTCOLUMN(Tj}, ¢;) action, it
is factorized as the probability of selecting the ta-
ble T; (given by Eq. (4)), times the probability of
selecting the column c;. The latter is defined as

score(cj) = Softmax (DotProduct(statet, cj)>.
(6)
We also add simple entity linking features to
the representations in M, defined by the follow-
ing heuristics: (1) If an utterance token =z € u
matches with the name of a table T', we concatenate
a trainable embedding vector (table_match &
R16) to the representations of z and 7. (2)
Similarly, we concatenate an embedding vector
(column_match € R'0) to the representations
of an utterance token and a column if their names
match. (3) Finally, we concatenate a zero-vector
(0 € R'5) to representations of all unmatched ele-
ments.

Configuration We use the default configuration
of TranX. For TABERT parameters, we use an
Adam optimizer with a learning rate of 3e — 5
and linearly decayed learning rate schedule, and
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select_stmt = SelectStatement(
distinct distinct,
expr* result_columns,
expr? where_clause,
order_by_clause? order_by_clause,
int? limit_value,
table_ref* join_with tables,
compound_stmt? compound_statement

)

distinct = Nome | Distinct

H H HH H H R

DISTINCT keyword

Columns in SELECT clause

WHERE clause

ORDER BY clause

LIMIT clause

Tables in the JOIN clause

Compound statements (e.g., UNION, EXCEPT)

order_by_clause = OrderByClause(expr* expr_list, order order)

order = ASC | DESC

expr = AndExpr(expr* expr_list)
| OrExpr(exprx expr_list)
NotExpr (expr expr)

Al1Rows (table_ref table_name)
select_stmt

Literal(string value)
ColumnReference(column_ref column_name)

aggregate op = Sum | Max | Min | Count | Avg

compare op =
| GreaterThanEqual | Equal | NotEqual

binary op = Add | Sub | Divide | Multiply
compound._stmt =

compound-op = Union | Intersect | Except

LessThan | LessThanEqual | GreaterThan

CompareExpr (compare_op op, expr left_value, expr right_value)
AggregateExpr(aggregate_op op, expr value, distinct distinct)
BinaryExpr(binary_ op op, expr left_value, expr right_value)
BetweenExpr (expr field, expr left_value, expr right_value)
InExpr(column ref left_value, expr right_value)
LikeExpr(column ref left_value, expr right_value)

CompoundStatement (compound_op op, select_stmt query)

Figure 2: ASDL Grammar of SemQL used in TranX

another Adam optimizer with a constant learning
rate of 1e — 3 for all remaining parameters. During
training, we update model parameters for 25000 it-
erations, and freeze the TABERT parameters at the
first 1000 update steps. We use a batch size of 30
and beam size of 3. We use gradient accumulation
for large models to fit a batch into GPU memory.

B.2 Weakly-supervised Parsing on
WIKITABLEQUESTIONS

Model We use MAPO (Liang et al., 2018), a
strong weakly-supervised semantic parser. The
original MAPO models comes with an LSTM en-
coder, which generates utterance and column rep-
resentations used by the decoder to predict table
queries. We directly substitute the encoder with
TABERT, and project the utterance and table repre-
sentations from TABERT to the original embedding
space using a linear transformation. MAPO uses

a domain-specific query language tailored to an-
swer compositional questions on a single table. For
instance, the example question in Fig. 1 could be
answered using the following query:

Table.contains(column=Position, value=1st)
# Get rows whose ‘Position’ field contains
.argmax (order_by=Year

the row which has the largest ‘Year’ field
.hop(column=Venue)

# Select the value of ‘Venue’

‘1st’
# Get

in the result row

MAPO is written in Tensorflow. In our experiments
we use an optimized re-implementation in PyTorch,
which yields 4 x training speedup.

Configuration We use the same optimizer and
learning rate schedule as in § B.1. We use a batch
size of 10, and train the model for 20000 steps,
with the TABERT parameters frozen at the first
5000 steps. Other hyper-parameters are kept the
same as the original MAPO system.
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