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Abstract

Efficient structure encoding for graphs with
labeled edges is an important yet challeng-
ing point in many graph-based models. This
work focuses on AMR-to-text generation – A
graph-to-sequence task aiming to recover nat-
ural language from Abstract Meaning Repre-
sentations (AMR). Existing graph-to-sequence
approaches generally utilize graph neural net-
works as their encoders, which have two limi-
tations: 1) The message propagation process
in AMR graphs is only guided by the first-
order adjacency information. 2) The relation-
ships between labeled edges are not fully con-
sidered. In this work, we propose a novel
graph encoding framework which can effec-
tively explore the edge relations. We also
adopt graph attention networks with higher-
order neighborhood information to encode
the rich structure in AMR graphs. Experi-
ment results show that our approach obtains
new state-of-the-art performance on English
AMR benchmark datasets. The ablation anal-
yses also demonstrate that both edge relations
and higher-order information are beneficial to
graph-to-sequence modeling.

1 Introduction

Abstract Meaning Representation (Banarescu et al.,
2013) is a sentence-level semantic representation
formalized by a rooted directed graph, where nodes
are concepts and edges are semantic relations.
Since AMR is a highly structured meaning repre-
sentation, it can promote many semantic related
tasks such as machine translation (Song et al.,
2019) and summarization (Liao et al., 2018). How-
ever, the usage of AMR graphs can be challenging,
since it is non-trivial to completely capture the rich
structural information in the graph-based data, es-
pecially when the graph has labeled edges.

∗Kai Yu is the corresponding author.
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Figure 1: An AMR graph (left) for sentence ”He runs
as fast as the wind.” and its concept graph and relation
graph (line graph). Two graphs are aligned with each
other based on the node-edge relations in the original
graph.

Generation from AMR aims to translate the
AMR semantics into the surface form (natural lan-
guage). It is a basic Graph-to-sequence task that
directly takes AMR as input. Figure 1 (left) gives a
standard AMR graph and its corresponding surface
form. Early works utilize sequence-to-sequence
framework by linearizing the entire graph (Konstas
et al., 2017; Cao and Clark, 2019). Such repre-
sentation may lose useful structural information.
In recent studies, graph neural networks (GNNs)
have been in a dominant position on this task and
achieved state-of-the-art performance (Beck et al.,
2018; Song et al., 2018; Guo et al., 2019; Damonte
and Cohen, 2019). However, In these GNN-based
models, the representation of each concept node is
only updated by the aggregated information from
its neighbors, which leads to two limitations: 1)
The interaction between indirectly connected nodes
heavily relies on the number of stacked layers.
When the graph size becomes larger, the depen-
dencies between distant AMR concepts cannot be
fully explored. 2) They only focus on modeling
the relations between concepts while ignoring edge
relations and their structures. Zhu et al. (2019)
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and Cai and Lam (2019) use Transformer to model
arbitrary concept pairs no matter whether directly
connected or not, but they still ignore the topo-
logical structures of the edges in the entire AMR
graph.

To address the above limitations, we propose
a novel graph-to-sequence model based on graph
attention networks (Velickovic et al., 2018). We
transform the edge labels into relation nodes and
construct a new graph that directly reflects the edge
relations. In graph theory, such a graph is called
a Line Graph (Harary and Norman, 1960). As il-
lustrated in Figure 1, we thus separate the original
AMR graph into two sub-graphs without labeled
edges – concept graph and relation graph. The
two graphs describe the dependencies of AMR con-
cepts and edges respectively, which is helpful in
modeling these relationships (especially for edges).
Our model takes these sub-graphs as inputs, and the
communications between the two graphs are based
on the attention mechanism. Furthermore, for both
graphs, we mix the higher-order neighborhood in-
formation into the corresponding graph encoders in
order to model the relationships between indirectly
connected nodes.

Empirical study on two English benchmark
datasets shows that our model reaches state-of-the-
art performance with 30.58 and 32.46 BLEU scores
on LDC2015E86 and LDC2017T10, respectively.
In summary, our contributions include:

• We propose a novel graph-to-sequence model,
which firstly uses the line graph to model the
relationships between AMR edges.

• We integrate higher-order neighborhood infor-
mation into graph encoders to model the rela-
tionships between indirectly connected nodes.

• We demonstrate that both higher-order neigh-
borhood information and edge relations are
important to graph-to-sequence modeling.

2 Mix-Order Graph Attention Networks

In this section, we first introduce graph attention
networks (GATs) and their mix-order extensions,
which are the basis of our proposed model.

2.1 Graph Attention Networks

GAT is a special type of networks that operates on
graph-structured data with attention mechanisms.
Given a graph G = (V,E), where V and E are

𝒙𝒊

𝑹𝟏(𝒙𝒊)

𝑹𝟐(𝒙𝒊)

Figure 2: Neighborhood information in different or-
ders.

the set of nodes xi and the set of edges (eij , `e)1,
respectively. N (xi) denote the nodes which are
directly connected by xi. N+(xi) is the set in-
cluding xi and all its direct neighbors. we have
N+(xi) = N (xi) ∪ {xi}.

Each node xi in the graph has an initial feature
h0
i ∈ Rd, where d is the feature dimension. The

representation of each node is iteratively updated
by the graph attention operation. At the l-th step,
each node xi aggregates context information by at-
tending over its neighbors and itself. The updated
representation hl

i is calculated by the weighted av-
erage of the connected nodes:

hl
i = σ

 ∑
xj∈N+(xi)

αijh
l−1
j Wl

 , (1)

where attention coefficient αij is calculated as:

αij = softmaxj
(
hl−1
i Wl

t1

)(
hl−1
j Wl

t2

)T
(2)

where σ is a nonlinear activation function, e.g.
ReLU. Wl, Wl

t1 and Wl
t2 ∈ Rd×d are learnable

parameters for projections. After L steps, each
node will finally have a context-aware represen-
tation hL

i . In order to achieve a stable training
process, we also employ a residual connection fol-
lowed by layer normalization between two graph
attention layers.

2.2 Mixing Higher Order Information
The relations between indirectly connected nodes
are ignored in a traditional graph attention layer.
Mix-Order GAT, however, can explore these rela-
tionships in a single-step operation by mixing the
higher-order neighborhood information. We first
give some notations before describing the details of
the Mix-Order GAT. We use RK =

{
R1, ...RK

}
to represent neighborhood information from order

1`e is the edge label which are not considered in the GAT
layer
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Figure 3: An overview of our proposed model

1 to order K. Rk(xi) denotes the k-th order neigh-
borhood, which means all nodes in Rk(xi) are
reachable for xi within k hops (k ≥ 1). R1(xi) =
N+(xi), and as illustrated in Figure 2, we can have:

Rk(xi) =
⋃

xj∈Rk−1(xi)

N+(xj). (3)

The K-Mix GAT integrates the neighborhood
information RK . At the l-th update step, each
xi will interact with its reachable neighbors with
different orders and calculate the attentive features
independently. The representation hl

i is updated by
the concatenated features from different orders, i.e.

hl
i = MixGATl(hl−1

i ,RK)

=
Kn

k=1

σ

 ∑
xj∈Rk(xi)

αk
ijh

l−1
j Wl

k

 ,
(4)

where
f

represents concatenation, αk
ij are the atten-

tion weights in the k-th order, and Wl
k ∈ Rd×d/K

are learnable weights for projections. We will use
MixGAT(·) to denote the Mix-Order GAT layer in
the following section.

3 Method

The architecture of our method is illustrated in Fig-
ure 3. As mentioned above, we separate the AMR
graph into two sub-graphs without labeled edges.
Our model follows the Encoder-Decoder architec-
ture, where the encoder takes the two sub-graphs
as inputs, and the decoder generates corresponding
text from the encoded information. We first give

some detailed explanations about the line graph
and input representation.

3.1 Line Graph & Input Representation
The line graph of a graph G is another graph L(G)
that represents the adjacencies between edges of G.
L(G) is defined as:

• Each node of L(G) represents an edge of G

• Two nodes of L(G) are adjacent if and only
if their corresponding edges share a common
node in G.

For directed graphs, the directions are maintained
in the corresponding line graphs. Redundant edges
between two relation nodes are removed in the line
graphs. Figure 4 provides several examples.

In our model, we use the line graph to orga-
nize labeled edges and transform the original AMR
graph into two sub-graphs. Given an AMR graph
Ga = (Va, Ea), we separate it into concept graph
Gc = (Vc, Ec) and relation graph Ge = (Ve, Ee),
where Ge = L(Ga). As for concept graph Gc, its
topological structure is the same with Ga, but the
edge labels are eliminated, i.e.

Vc = Va; Ec = Êa, (5)

Where Êa is the edge set without label information.
Both Gc and Ge have no labeled edges, which can
be efficiently encoded by Mix-Order GAT.

We use RK
c and RK

e to denote 1 ∼ K orders
neighborhood information of Gc and Ge. We repre-
sent each concept node xi ∈ Vc with an initial em-
bedding c0i ∈ Rd, and each relation node yi ∈ Ve
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Figure 4: Examples of finding line graphs. In the left
part, e1 and e2 have opposite directions, so each direc-
tion is maintained in the line graph. In the right part, e1
and e2 follow the same direction, so there is only one
direction in the corresponding line graph.

with an embedding e0i ∈ Rd. The sets of node
embeddings are denoted as C0 = {c0i }mi=1 and
E0 = {e0i }ni=1, where m = |Vc| and n = |Ve|
denote the numbers of concept nodes and relation
nodes, respectively. Thus, the inputs of our system
can be formulated by I =

{
C0,E0,RK

c ,R
K
e

}
.

3.2 Self Updating

The encoder of our system consists of N stacked
graph encoding layers. As illustrated in Figure
3, each graph encoding layer has two parts: self-
updating for each graph and masked cross attention.
For Gc and Ge, We use Cl−1 = {cl−1i }mi=1 and
El−1 = {el−1i }ni=1 to denote the input node em-
beddings of the l-th encoding layer. The represen-
tations of the two graphs are updated independently
by mix-order graph attention networks (MixGAT).
At the l-th step (layer), we have:

~Cl
self = MixGATl

c1(C
l−1,RK

c ),

~El
self = MixGATl

e1(E
l−1,RK

e ).
(6)

Where ~Cl
self and ~El

self are updated represen-
tations according to the mix-order neighborhood
information RK

c and RK
e . One thing should be

noticed is that both Gc and Ge are directed graphs.
This implies that the information propagation in
the graph is in a top-down manner, following the
pre-specified direction. However, unidirectional
propagation loses the structural information in the
reversed direction. To build communication in both
directions, we employ Dual Graph (Ribeiro et al.,
2019). Dual graph has the same node representa-
tions but reversed edge directions compared to the
original graph. For example, if edge A→B is in the
original graph, it turns to B→A in the correspond-
ing dual graph. Since dual graphs have the same
node representations, we only need to change the
neighborhood information. Denote G̃c and G̃e as
the dual graph of Gc and Ge. R̃K

c and R̃K
e are

the corresponding neighborhood information. We
have:

~C
l

self = MixGATl
c2(C

l−1, R̃K
c ),

~E
l

self = MixGATl
e2(E

l−1, R̃K
e ).

(7)

Since we have updated the node embeddings
in two directions, the final representations of the
independent graph updating process are the combi-
nation of the bi-directional embeddings, i.e.

Cl
self =

[
~Cl

self ;
~C
l

self

]
Wl

c1,

El
self =

[
~El
self ;

~E
l

self

]
Wl

e1,
(8)

where Wl
c1 and W1

e1 ∈ R2d×d are trainable matrix
for projections. Cl

self ∈ Rm×d and El
self ∈ Rn×d

are results of the self-updating process.

3.3 Masked Cross Attention
Self updating for Gc and Ge can model the rela-
tionships of AMR concepts and edge respectively.
However, it is also necessary to explore the de-
pendencies between concept nodes and relation
nodes. As a result, the cross-graph communication
between Gc and Ge is very important. From the
structure of the original AMR graph, we can easily
build alignment between Gc and Ge. A relation
node yi is directly aligned to a concept node xi
if xi is the start-point/end-point of the edge corre-
sponding to yi. As illustrated in Figure 1, ARG0
is the edge between run-02 and he. As a result,
node ARG0 in Ge is directly connect to run-02
and he in Gc.

We apply the attention mechanism to complete
the interaction between the two graphs, and use
M ∈ Rn×m to mask the attention weights of un-
aligned pairs between Gc and Ge. For element mij

in M, we let mij = 0 if yi ∈ Ve is aligned to
xj ∈ Vc, otherwise mij = −∞. The masked cross
attention is employed between the representation
sets El

self and Cl
self , and the matrix of attention

weights Al can be calculated as:

Al =
(
El

selfW
l
a1

)(
Cl

selfW
l
a2

)T
+M, (9)

where Wl
a1 and Wl

a2 ∈ Rd×d are learnable projec-
tion matrixes. The weight scores of unaligned pairs
are set to −∞ according to M. For nodes in El

self ,
the relevant representation from Cl

self is identified
using Al as:

El
cross = softmax (Al)C

l
self , (10)
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where El
cross ∈ Rn×d is the masked weighted

summation of Cl
self . The same calculation is per-

formed for nodes in Cl
self as:

Cl
cross = softmax(AT

l )E
l
self . (11)

The final outputs of a graph encoding layer are
the combination of the original embeddings and
the context representations from another graph. We
also employ the outputs from previous layer as
residual inputs, i.e.

Cl = FFN
([

Cl
self ;C

l
cross

]
Wl

c2 +Cl−1
)
,

El = FFN
([

El
self ;E

l
cross

]
Wl

e2 +El−1
)
,

(12)

where FFN is a feed-forward network consists of
two linear transformations. After N -stacked graph
encoding layers, The two graphs Gc and Ge are
finally encoded as CN and EN .

3.4 Decoder

The decoder of our system is similar to the Trans-
former decoder. At each generation step, the repre-
sentation of the output token is updated by multiple
rounds of attention with the previously-generated
tokens and the encoder outputs. Note that the out-
puts of our graph encoder have two parts: concept
representations CN and the relation representations
EN . For generation, concept information is more
important, since the concept graph directly con-
tains the natural words. With the multi-step cross
attention, CN also caries abundant relation infor-
mation. For simplicity, we only use CN as the
encoder output on the decoder side2.

To address the data sparsity issue in sequence
generation, we employ the Byte Pair Encoding
(BPE) (Sennrich et al., 2016) following the set-
tings of Zhu et al. (2019). We split the word nodes
in AMR graphs and reference sentences into sub-
words, and the decoder vocabulary is shared with
the encoder for concept graphs.

4 Experiments

4.1 Settings

Data and preprocessing We conduct our experi-
ments with two benchmark datasets: LDC2015E85
and LDC2017T10. The two datasets contain

2We also implement a version which considers both CN

and EN , and achieve similar results

16833 and 36521 training samples, and they use
a common development set with 1368 samples
and a common test set with 1371 samples. We
segment natural words in both AMR graphs and
references into sub-words. As a result, a word
node in AMR graphs may be divided into several
sub-word nodes. We use a special edge subword
to link the corresponding sub-word nodes. Then,
for each AMR graph, we find its correspond-
ing line graph and generateGc andGe respectively.

Training details For model parameters, the
number of graph encoding layers is fixed to 6, and
the representation dimension d is set to 512. We
set the graph neighborhood order K = 1, 2 and
4 for both Gc and Ge. The Transformer decoder
is based on Open-NMT (Klein et al., 2018), with
6 layers, 512 dimensions and 8 heads. We use
Adam (Kingma and Ba, 2015) as our optimizer
and β = (0.9, 0.98). The learning rate is varied
over the course of training, similar with Vaswani
et al. (2017):

lr = γd−0.5 ·min(t−0.5, t ∗ w−1.5), (13)

where t denotes the accumulative training steps,
and w indicates the warmup steps. We use w =
16000 and the coefficient γ is set to 0.75. As for
batch size, we use 80 for LDC2015E86 and 120
for LDC2017T10.3

4.2 Results
We compare our system with several baselines,
including traditional sequence-to-sequence mod-
els, several graph-to-sequence models with multi-
ple graph encoders, and transformer-based models.
All models are trained on the single dataset with-
out ensemble or additional unlabeled data. For
performance evaluation, we use BLEU (Papineni
et al., 2002) as our major metric. We also use Me-
teor (Banerjee and Lavie, 2005), which considers
the synonyms between predicted sentences and ref-
erences.

The experimental results on the test sets of
LDC2015E86 and LDC2017T10 are reported in
Table 1. As we can see, Sequence-based models
perform the worst, since they lose useful struc-
tural information in graphs. Graph-based mod-
els get better results with varied graph encoders
to capture the structural information in graphs.

3 Our code is available at https://github.com/
ybz79/AMR2text

https://github.com/ybz79/AMR2text
https://github.com/ybz79/AMR2text
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Models LDC2015E86 LDC2017T10
BLEU Meteor BLEU Meteor

Sequence-Based Model
Seq2Seq (Konstas et al., 2017) 22.00 – – –
Syntax+S2S (Cao and Clark, 2019) 23.50 – 26.80 –

Graph-Based Model
Graph LSTM (Song et al., 2018) 23.30 – – –
GCNSEQ (Damonte and Cohen, 2019) 24.40 23.60 24.54 24.07
Dual Graph (Ribeiro et al., 2019) 24.32 30.53 27.87 33.21
DCGCN (Guo et al., 2019) 25.70 31.50 27.60 34.00

Transformer-Based Model
Transformer (Zhu et al., 2019) 25.50 33.16 27.43 34.62
Graph Transformer (Cai and Lam, 2019) 27.40 32.90 29.80 35.10
Structural Transformer (SA) (Zhu et al., 2019) 29.66 35.45 31.54 36.02

Our Approach
Line Graph + MixGAT, K = 1 28.64 34.51 29.96 35.15
Line Graph + MixGAT, K = 2 29.62 35.38 31.06 36.13
Line Graph + MixGAT, K = 4 30.58 35.81 32.46 36.78

Table 1: Main results of our approaches and several baselines on the test sets of LDC2015E86 and LDC2017T10

Transformer-based models reach previous state-of-
the-art with structure-aware self-attention approach
to better modeling the relations between indirectly
connected concepts. Comparing to previous stud-
ies, our approach with K = 4 order neighborhood
information reaches the best BLEU scores, improv-
ing over the state-of-the-art model (Zhu et al., 2019)
by 0.92 on both datasets. Similar phenomena can
be found on the additional metrics of Meteor.

5 Analysis

As mentioned above, our system has two critical
points: higher-order graph neighborhood informa-
tion and relationships between AMR edges. To
verify the effectiveness of these two settings, we
conduct a series of ablation tests based on different
characteristics of graphs.

Orders LDC2015E86 LDC2017T10
K=1 24.91% 31.03%
K=2 33.93% 40.71%
K=4 41.67% 48.30%

Table 2: The connectivity of the concept graphs under
different orders.

5.1 Ablation Study on Neighborhood
information

Higher order neighborhood information includes
the relationships between indirectly connected
nodes. Table 2 shows the connectivity of the con-

cept graphs under different orders. When K = 1,
each node can reach 24.91% of the other nodes
directly in the graph (LDC2015E86), and it grows
to 41.67% when K = 4.

As suggested in Table 1, if graph nodes only
interact with their direct neighbors (K = 1), it
performs worse than previous Transformer-based
models. However, significant improvement can be
observed when we integrate higher-order neigh-
borhood information. As K grows form 1 to
4, the BLEU score increases 1.94 and 2.50 on
LDC2015E86 and LDC2017T10, respectively.

25

29

33

37

41

1~10 11~20 21~30 >30

BL
EU

 K=1

 K=4

Figure 5: BLEU variation between models with differ-
ent orders K with respect to AMR graph size.

As mentioned above, if only consider the first-
order neighborhood, the dependencies between dis-
tant AMR concepts cannot be fully explored when
the graph size becomes larger. To verify this hy-
pothesis, we split the test set into different parts
according to the AMR graph size (i.e. number
of concepts). We evaluate our models with order
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Figure 6: BLEU variation between models with different Ke with respect to size of AMR graph and (left) and
reentrancy numbers (right).

K = 4 and K = 1 on different partitions. All mod-
els are trained on LDC2015E86 set. Figure 5 shows
the result. The model with K = 4 significantly out-
performs the one with K = 1. Furthermore, we
can find that the performance gap between the two
models increases when the graph gets bigger. As
a result, higher-order neighborhood information
does play an important role in graph-to-sequence
generation, especially for larger AMR graphs.

5.2 Ablation Study on Relationships of
Labeled Edges

We are the first one to consider the relationships be-
tween labeled edges in AMR graph by integrating
the line graph (relation graph) Ge in our system.
This section will deeply analyze the effectiveness
of this contribution. In previous settings, the graph
neighborhood order K is the same for both Gc and
Ge. To conduct the ablation test, we fix the neigh-
borhood order Kc for Gc and vary the order Ke for
relation graph Ge. We set Ke = 0, 1 and 4, where
Ke = 0 indicates that the relation nodes in Ge can
only interact with itself. This means the dependen-
cies between AMR edges are completely ignored,
and the edge information is simply combined with
the corresponding concepts. We report the results
on both test sets in Table 3.

LDC2015E86 LDC2017T10

Models BLEU Meteor BLEU Meteor

Kc = 4, Ke = 0 28.89* 35.00 31.08* 36.11
Kc = 4, Ke = 1 29.41* 35.29 31.35* 36.18
Kc = 4, Ke = 4 30.58 35.81 32.46 36.78

Table 3: Results of models with varied neighborhood
orders of relation graph Ge. BLEU scores significantly
different from the best model is marked with * (p <
0.01), tested by bootstrap resampling (Koehn, 2004).

If we ignore the dependencies between AMR

edges (Ke = 0), there is a significant performance
degradation: 1.69 and 1.38 BLEU score decline
on LDC2015E86 and LDC2017T10 respectively.
The performance gets better when Ke > 0, which
means the edge relations do bring benefits to the
graph encoding and sequence generation. When
Ke = 4, the edge relations are fully explored in
varied neighborhood orders, and it reaches the best
performance on both datasets. Performance test on
different partitions of AMR graph size (Figure 6,
left) also suggests that relationships of edges are
helpful when the graph becomes larger.

We also study the effectiveness of edge rela-
tions when handling reentrancies. Reentrancies
are the nodes with multiple parents. Such struc-
tures are identified as very difficult aspects in AMR
graph (Damonte and Cohen, 2019). We think the
relation graph Ge is helpful in exploring differ-
ent dependencies with the same concept, which
can bring benefits to those graphs containing more
reentrancies. To test this hypothesis, we also split
the test set into different parts according to their
numbers of reentrancies and evaluate our models
with Ke = 4 and Ke = 0 on different partitions.
As shown in Figure 6 (right), the gap becomes wide
when the number of reentrancies grows to 5. Also,
compare to the graph size, edge relations are more
important in handling graphs with reentrancies.

5.3 Case Study

To gain insight into the model performance. Table
4 provides a few examples. The reentrancies in the
AMR graphs is marked with bold type.

In Example (a), two different nodes have same
concept – compete, but they have different forms
in the corresponding natural language. According
to the references, one is for ”competitors” and the
other is for ”competition”. Our model withKe = 0
fails to distinguish the difference and generate two
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(f / feel-02
:ARG0 (h / he)
:ARG1 (p / person

:quant (m / more)
:ARG0-of (c / compete-01)
:ARG1-of (n / new-01)
:source (c2 / country

:poss (w / we)))
:ARG0-of (p2 / participate-01

:ARG1 (c3 / compete-01
:mod (t / this)))))

Reference: he felt that , there were more new competitors
from our country participating in this competition .

Ke = 0: he feels more competition from our country
who participate in this competition .
Ke = 4: he feels that more new competitors from
our country who participate in this competition .

(a)

(c / contrast-01
:ARG1 (w / want-01

:ARG0 (t / they)
:ARG1 (m / money))

:ARG2 (w2 / want-01 :polarity -
:ARG0 (t / they)
:ARG1 (f / face)))

Reference: they want money , not the face

Ke = 0: they want money but do n’t want to face .
Ke = 4: they want the money , not the face .

(b)

(p / possible-01
:ARG1 (h / help-01

:ARG0 (p2 / person)
:ARG1 (y / you))

:condition (t / tell-01
:ARG0 (y / you)

:ARG2 (p2 / person)))

Reference: if you tell people they can help you,
GCNSEQ: if you tell them , you can help you !
ST-Transformer: if you tell people , people can help you !

Ours (Ke = 4): people can help you if you tell them ...
(c)

Table 4: Examples comparison between (a) Our ap-
proach with differentKe. (b) Our approach and several
baselines.

”competition” in the output. However, model with
Ke = 4 successfully recover word ”competitors”
from the context of the AMR graph.

In Example (b), the concept they has two par-
ents with the same concept – want. Though our
model with Ke = 0 successfully finds they is
the subject of the both two want, it fails to recog-
nize the parallel relationship between the objects
money and face and regard face as a verb. In
the contrast, our model with Ke = 4 perfectly
finds the parallel structure in the AMR graph and

reconstructs the correct sentence.
In Example (c), we compare our best model with

two baselines: GCNSEQ (Damonte and Cohen,
2019) and Structural Transformer (Denote as ST-
Transformer) from Zhu et al. (2019). The AMR
graph in Example (b) has two reentrancies, which
makes it more difficult to recover the corresponding
sentence. As we can see, traditional graph-based
model GCNSEQ cannot predict the correct subject
of the predicate can. Structural-Transformer uses
the correct subject, but the recovered sentence is
quite disfluent because of the redundant people.
This overgeneration problem is mainly caused by
reentrancies (Beck et al., 2018). However, our
model can effectively handle this problem and gen-
erates a proper sentence with correct semantics.

6 Related Work

AMR-to-text generation is a typical graph-to-
sequence task. Early research employs rule-based
methods to deal with this problem. Flanigan
et al. (2016) use two-stage method by first split
the graphs into spanning trees and use multiple
tree transducers to generate natural language. Song
et al. (2017) use heuristic extraction algorithm to
learn graph-to-string rules. More works frame
graph-to-sequence as a translation task and use
either phrase-based (Ferreira et al., 2017; Pour-
damghani et al., 2016) or neural-based (Konstas
et al., 2017) models. These methods usually need
to linearize the input graphs by means of a depth-
first traversal. Cao and Clark (2019) get a bet-
ter sequence-based model by leveraging additional
syntactic information.

Moving to graph-to-sequence approaches,
Marcheggiani and Perez-Beltrachini (2018) first
show that graph neural networks can significantly
improve the generation performance by explicitly
encoding the structure of the graph. Since
than, models with variant graph encoders have
been proposed in recent years, such as graph
LSTM (Song et al., 2018), gated graph neural
networks (GGNN) (Beck et al., 2018) and graph
convolutional neural networks (Damonte and
Cohen, 2019). Guo et al. (2019) introduce dense
connectivity to allow the information exchange
across different of layers. Ribeiro et al. (2019)
learn dual representations capturing top-down and
bottom-up adjuvant view of the graph, and reach
the best performance in graph-based models.

Despite the great success of graph neural net-
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works, they all restrict the update of node repre-
sentation based on only first-order neighborhood
and rely on stacked layers to model the relation-
ships between indirectly connected nodes. To
solve this problem, recent studies extend the Trans-
former (Vaswani et al., 2017) to encode the graph
structure. Zhu et al. (2019) and Cai and Lam (2019)
use relation-aware self-attention to encode struc-
tural label sequences of concept pairs, which can
model arbitrary concept pairs no matter whether di-
rectly connected or not. With several mechanisms
such as sub-word (Sennrich et al., 2016) and shared
vocabulary, Zhu et al. (2019) achieved state-of-the-
art performance on this task.

Our model follows the same spirit of exploring
the relations between indirectly connected nodes,
but our method is substantially different: (1) we
use a graph-based method integrated with higher-
order neighborhood information while keeping the
explicit structure of graphs. (2) we first consider
the relations between labeled edges by introducing
line graphs.

7 Conclusion and Future Work

In this work, we presented a novel graph-to-
sequence approach which uses line graph to model
the relationships between labeled edges from the
original AMR graph. The mix-order graph at-
tention networks are found effective when han-
dling indirectly connected nodes. The ablation
studies also demonstrate that exploring edge rela-
tions brings benefits to graph-to-sequence model-
ing. Furthermore, our framework can be efficiently
applied to other graph-to-sequence tasks such as
WebNLG (Gardent et al., 2017) and syntax-based
neural machine translation (Bastings et al., 2017).
In future work we would like to do several experi-
ments on other related tasks to test the versatility
of our framework. Also, we plan to use large-scale
unlabeled data to improve the performance further.
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