
Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pages 6640–6651
July 5 - 10, 2020. c©2020 Association for Computational Linguistics

6640

The Right Tool for the Job: Matching Model and Instance Complexities

Roy Schwartz♦♠ Gabriel Stanovsky♦♠ Swabha Swayamdipta♦
Jesse Dodge♣∗ Noah A. Smith♦♠

♦Allen Institute for Artificial Intelligence
♠Paul G. Allen School of Computer Science & Engineering, University of Washington

♣School of Computer Science, Carnegie Mellon University
{roys,gabis,swabhas,jessed,noah}@allenai.org

Abstract

As NLP models become larger, executing a
trained model requires significant computa-
tional resources incurring monetary and envi-
ronmental costs. To better respect a given
inference budget, we propose a modification
to contextual representation fine-tuning which,
during inference, allows for an early (and
fast) “exit” from neural network calculations
for simple instances, and late (and accurate)
exit for hard instances. To achieve this, we
add classifiers to different layers of BERT and
use their calibrated confidence scores to make
early exit decisions. We test our proposed
modification on five different datasets in two
tasks: three text classification datasets and two
natural language inference benchmarks. Our
method presents a favorable speed/accuracy
tradeoff in almost all cases, producing mod-
els which are up to five times faster than the
state of the art, while preserving their accu-
racy. Our method also requires almost no ad-
ditional training resources (in either time or
parameters) compared to the baseline BERT
model. Finally, our method alleviates the need
for costly retraining of multiple models at dif-
ferent levels of efficiency; we allow users to
control the inference speed/accuracy tradeoff
using a single trained model, by setting a sin-
gle variable at inference time. We publicly re-
lease our code.1

1 Introduction

The large increase in the size of artificial intel-
ligence models often increases production costs
(Amodei and Hernandez, 2018; Schwartz et al.,
2019), and can also limit adoption on real-time de-
vices. Compared to training, which is a one-time
large investment, inference costs are incurred for
every instance in production, and can thus add up

∗Research completed during an internship at AI2.
1github.com/allenai/sledgehammer

Layer 0

Layer i

Layer k

Layer n

Input

Layer l

Layer j

Is confident? Yes
No

Is confident? Yes
No

Is confident? Yes
No

Prediction

Early exit
prediction

Early exit
prediction

Early exit
prediction

Figure 1: An illustration of our approach. Some lay-
ers of a BERT-large model are attached to output clas-
sifiers, which make their respective predictions. The
confidence of each layer-wise prediction is computed.
If high enough, the model takes an early exit, avoid-
ing the computation associated with successive (higher)
layers (grayed out). Otherwise, the model continues to
the next layer/classifier.

significantly. For instance, Microsoft reports that
using BERT (Devlin et al., 2019) to process Bing
queries requires more than 2,000 GPUs concur-
rently.2

We present a method to reduce the inference cost
of today’s common models in NLP: fine-tuned con-
textual word representations. Our method exploits
variation along two axes: models differ in size and
cost, and instances vary in difficulty. Our method
assesses the complexity of each test instance and
matches it with the most efficient model in our
“toolbelt.”3 As a result, some instances, which we
refer to in this paper as “easy” or “simple,” can
be solved by small models, leading to computa-
tional savings, while other instances (termed “hard”
or “difficult”) have access to larger models, thus

2https://tinyurl.com/tzhj3o8
3Our approach should not be confused with model ensem-

bles (Kuncheva and Whitaker, 2003), where the prediction of
multiple models is combined, on every instance, in order to
improve accuracy, at the expense of slower inference time.

https://github.com/allenai/sledgehammer
https://tinyurl.com/tzhj3o8

6641

retaining good performance.
We apply our method to the BERT-large model,

modifying its fine-tuning procedure by adding mul-
tiple output layers to some of its original ` = 24
layers.4 A classifier at the kth layer, is more ef-
ficient, though (presumably) less accurate than a
classifier at a later `th layer (where ` > k). At infer-
ence time, we run each instance on these classifiers
in increasing order of depth. For each classification
decision, we use its confidence as an inference-
stopping criterion, continuing to the next, larger
classifier only if the current classifier is not con-
fident enough in its prediction. Since confidence
scores play an important role, we use calibration
techniques to make them more reliable. Associ-
ating classifiers with different layers of the same
network allows us to reuse the computation per-
formed by the simple classifiers for the complex
ones. See Figure 1 for an illustration.

We experiment with three text classification
benchmarks and two natural language inference
(NLI) benchmarks. We consider each of our clas-
sifiers with different BERT layers as individual
baselines. We find that using our method leads
to a consistently better speed/accuracy tradeoff in
almost all cases. In particular, in some cases, we
obtain similar performance while being as much
as five times faster than our strongest baseline (the
original BERT-large mode with a single classifica-
tion layer after the last layer).

Our approach, while allowing substantially
faster inference compared to the standard BERT-
large model, is neither slower to fine-tune nor sig-
nificantly larger in terms of parameters, requiring
less than 0.005% additional parameters. More-
over, our method is quite flexible: unlike other ap-
proaches for inference speed-up such as model dis-
tillation or pruning, which require training a differ-
ent model for each point along the speed/accuracy
curve, our method only requires training a sin-
gle model, and by setting a single variable at in-
ference time—the confidence threshold—supports
each point along that curve. Finally, our method
is orthogonal to compression methods such as
model distillation (Hinton et al., 2014). Our ex-
periments with a distilled version of BERT (Jiao
et al., 2019) show that our method further improves
the speed/accuracy curve on top of that model. We

4For simplicity, we refer to these output layers as clas-
sifiers, though our method can also be applied to non-
classification tasks.

publicly release our code.5

2 Premise: Models Vary in Size,
Examples Vary in Complexity

Our goal in this paper is to make model inference
more efficient. Our premise relies on two general
observations: first, as NLP models become bigger
(e.g., in number of parameters), they become both
better (in terms of downstream task accuracy), and
slower to run. This trend is consistently observed,
most notably in recent contextual representations
work that compares different variants of the same
model (Devlin et al., 2019; Radford et al., 2019;
Raffel et al., 2019, inter alia).

Second, inputs are not equally difficult. For ex-
ample, instances differ in length and wealth of lin-
guistic phenomena, which affects the amount of
processing required to analyze them. Consider the
examples below for the task of sentiment analysis:

(1) The movie was awesome.

(2) I can’t help but wonder whether the plot was
written by a 12 year-old or by an award-
winning writer.

Sentence 1 is short and simple to process. In con-
trast, Sentence 2 is long, contains misleading pos-
itive phrases (“award-winning writer”), and uses
figurative speech (“the plot was written by a 12
year-old”). As a result, it is potentially harder to
process.6

This work leverages these two observations by
introducing a method to speed-up inference by
matching simple instances with small models, and
complex instances with large models.

3 Approach: The Right Tool for the Job

Motivation We assume a series of n trained mod-
els m1, . . . ,mn for a given task, such that for each
1 < i ≤ n, mi is both more accurate than mi−1
(as measured by a performance on validation data)
and more expensive to execute. Current practice in
NLP, which favors accuracy rather than efficiency
(Schwartz et al., 2019), would typically run mn

on each test instance, as it would likely lead to
the highest test score. However, many of the test
instances could be solved by simpler (and faster)

5github.com/allenai/sledgehammer
6Note that simplicity is task-dependent. For example, in

topic classification, models often accumulate signal across a
document, and shorter inputs (with less signal) may be more
difficult than longer ones. See Section 6.

https://github.com/allenai/sledgehammer

6642

models; if we had an oracle that identifies the small-
est model that solves a given instance, we could
use it to substantially speed up inference. Our goal
is to create an automatic measure which approxi-
mates the behavior of such an oracle, and identify
the cheapest accurate model for each instance.

BERT-large To demonstrate our approach, we
consider the BERT-large model (Devlin et al.,
2019), based on a transformer architecture
(Vaswani et al., 2017) with 24 layers. To apply
BERT-large to some downstream task, an output
layer is typically added to the final layer of the
model, and the model is fine-tuned on training data
for that task. To make a prediction using the classi-
fier on the final layer, the computation goes through
all the layers sequentially, requiring more compu-
tation than a shallower model with fewer layers,
which would suffice in some cases.

Suite of models Our approach leverages BERT’s
multilayered structure by adding an output layer to
intermediate layers of the model. For k < `, the
output layer after k BERT layers exits the model
earlier than a deeper output layer `, and therefore
yields a more efficient (but potentially less accu-
rate) prediction.

Confidence scores for early exit decisions To
make early exit decisions, we calculate the layer-
wise BERT representations sequentially. As we
reach a classification layer, we use it to make pre-
dictions. We interpret the label scores output by
softmax as confidence scores. We use these con-
fidence scores to decide whether to exit early or
continue to the next (more expensive and more
accurate) classifier. See Figure 1 for an illustration.

Training details To train the model, we use the
standard way of applying BERT to downstream
tasks—fine-tuning the pre-trained weights, while
learning the weights of the randomly initialized
classifier, where here we learn multiple classifiers
instead of one. As our loss function, we sum the
losses of all classification layers, such that lower
layers are trained to both be useful as feature gen-
erators for the higher layers, and as input to their
respective classifiers. This also means that every
output layer is trained to perform well on all in-
stances. Importantly, we do not perform early exits
during training, but only during inference.

To encourage monotonicity in performance of
the different classifiers, each classifier at layer k is

given as input a weighted sum of all the layers up
to and including k, such that the weight is learned
during fine-tuning (Peters et al., 2018).7

Calibration Classifiers’ confidence scores are
not always reliable (Jiang et al., 2018). One way
to mitigate this concern is to use calibration, which
encourages the confidence level to correspond to
the probability that the model is correct (DeGroot
and Fienberg, 1983). In this paper we use temper-
ature calibration, which is a simple technique that
has been shown to work well in practice (Guo et al.,
2017), in particular for BERT fine-tuning (Desai
and Durrett, 2020). The method learns a single
parameter, denoted temperature or T , and divides
each of the logits {zi} by T before applying the
softmax function:

pred = arg max
i

exp(zi/T)∑
j exp(zj/T)

We select T to maximize the log-likelihood of the
development dataset. Note that temperature cali-
bration is monotonic and thus does not influence
predictions. It is only used in our model to make
early-exit decisions.

Discussion Our approach has several attractive
properties. First, if mi is not sufficiently confident
in its prediction, we reuse the computation and con-
tinue towardsmi+1 without recomputing the BERT
layers up to mi. Second, while our model is larger
in terms of parameters compared to the standard
approach due to the additional classification layers,
this difference is marginal compared to the total
number of trainable parameters: our experiments
used 4 linear output layers instead of 1, which re-
sults in an increase of 6K (binary classification)
to 12K (4-way classification) parameters. For the
BERT-large model with 335M trainable parameters,
this is less than 0.005% of the parameters. Third,
as our experiments show (Section 5), while present-
ing a much better inference time/accuracy tradeoff,
fine-tuning our model is as fast as fine-tuning the
standard model with a single output layer. More-
over, our model allows for controlling this tradeoff
by setting the confidence threshold at inference
time, allowing users to better utilize the model for
their inference budget.

7We also considered feeding the output of previous clas-
sifiers as additional features to subsequent classifiers, known
as stacking (Wolpert, 1992). Preliminary experiments did not
yield any benefits, so we did not further pursue this direction.

6643

Name #labels Train Val. Test

AG 4 115K 0.5K 7.6K
IMDB 2 020K 0.5K .25K
SST 2 007K 0.9K 1.8K

SNLI 3 550K .10K .10K
MNLI 3 393K 9.8K 9.8K

Table 1: Number of labels and instances for the
datasets in our experiments. The top set are text classi-
fication datasets, and the bottom set are NLI datasets.

4 Experiments

To test our approach, we experiment with three
text classification and two natural language infer-
ence (NLI) tasks in English. NLI is a pairwise
sentence classification task, where the goal is to
predict whether a hypothesis sentence entails, con-
tradicts or is neutral to a premise sentence (Dagan
et al., 2005). Below we describe our datasets, our
baselines, and our experimental setup.

Datasets For text classification, we experiment
with the AG news topic identification dataset
(Zhang et al., 2015) and two sentiment analysis
datasets: IMDB (Maas et al., 2011) and the bi-
nary Stanford sentiment treebank (SST; Socher
et al., 2013).8 For NLI, we experiment with the
SNLI (Bowman et al., 2015) and MultiNLI (MNLI;
Williams et al., 2018) datasets. We use the standard
train-development-test splits for all datasets except
for MNLI, for which there is no public test set. As
MNLI contains two validation sets (matched and
mismatched), we use the matched validation set as
our validation set and the mismatched validation
set as our test set. See Table 1 for dataset statistics.

Baselines We use two types of baselines: run-
ning BERT-large in the standard way, with a single
output layer on top of the last layer, and three effi-
cient baselines of increasing size (Figure 2). Each
is a fine-tuned BERT model with a single output
layer after some intermediate layer. Importantly,
these baselines offer a speed/accuracy tradeoff, but
not within a single model like our approach.

As all baselines have a single output layer, they
all have a single loss term, such that BERT layers
1, . . . , k only focus on a single classification layer,
rather than multiple ones as in our approach. As
with our model, the single output layer in each of

8For SST, we only used full sentences, not phrases.

our baselines is given as input a learned weighted
sum of all BERT layers up to the current layer.

As an upper bound to our approach, we consider
a variant of our model that uses the exact amount
of computation required to solve a given instance.
It does so by replacing the confidence-based early-
exit decision function with an oracle that returns the
fastest classifier that is able to solve that instance,
or the fastest classifier for instances that are not
correctly solved by any of the classifiers.

Experimental setup We experiment with BERT-
large-uncased (24 layers). We add output layers
to four layers: 0, 4, 12 and 23.9 We use the first
three layer indices for our efficient baselines (the
last one corresponds to our standard baseline). See
Appendix A for implementation details.

For training, we use the largest batch size that
fits in our GPU memory for each dataset, for both
our baselines and our model. Our approach relies
on discrete early-exit decisions that might differ
between instances in a batch. For the sake of sim-
plicity, we use a batch size of 1 during inference.
This is useful for production setups where instances
arrive one by one. Larger batch sizes can be applied
using methods such as budgeted batch classifica-
tion (Huang et al., 2018), which specify a budget
for the batch and select a subset of the instances
to fit that budget, while performing early exit for
the rest of the instances. We defer the technical
implementation of this idea to future work.

To measure efficiency, we compute the average
runtime of a single instance, across the test set.
We repeat each validation and test experiment five
times and report the mean and standard deviation.

At prediction time, our method takes as an input
a threshold between 0 and 1, which is applied to
each confidence score to decide whether to exit
early. Lower thresholds result in earlier exits, with
0 implying the most efficient classifier is always
used. A threshold of 1 always uses the most expen-
sive and accurate classifier.

5 Results

A better speed/accuracy tradeoff. Figure 3
presents our test results.10 The blue line shows
our model, where each point corresponds to an in-
creasingly large confidence threshold. The leftmost

9Preliminary experiments with other configurations, in-
cluding ones with more layers, led to similar results.

10For increased reproduciblity (Dodge et al., 2019a), we
also report validation results in Appendix B.

6644

Prediction

Layer 0

Layer i

Layer k

Layer n

Input

Layer l

Layer j

(a) Efficient Baseline

Prediction

Layer 0

Layer i

Layer k

Layer n

Input

Layer l

Layer j

(b) Standard Baseline

Layer 0

Layer i

Layer k

Layer n

Input

Layer l

Layer j

Is confident? Yes
No

Is confident? Yes
No

Is confident? Yes
No

Prediction

Early exit
prediction

Early exit
prediction

Early exit
prediction

(c) Our approach

Figure 2: Illustration of our baselines. (2a) Efficient baseline: adding a single output layer to an intermediate
layer, while not processing the remaining BERT layers. (2b) The standard model: adding a single output layer to
the final BERT layer. (2c) Our approach: adding multiple output layers to intermediate BERT layers; running the
corresponding classifiers sequentially, while taking early exits based on their confidence scores.

(rightmost) point is threshold 0 (1), with x-value
showing the fraction of processing time relative to
the standard baseline.

Our first observation is that our efficient base-
lines constitute a fast alternative to the standard
BERT-large model. On AG, a classifier trained on
layer 12 of BERT-large is 40% faster and within
0.5% of the standard model. On SNLI and IMDB a
similar speedup results in 2% loss in performance.

Most notably, our approach presents a similar
or better tradeoff in almost all cases. Our model
is within 0.5% of the standard model while being
40% (IMDB) and 80% (AG) faster. For SST, our
curve is strictly above two of the efficient baselines,
while being below the standard one. In the two NLI
datasets, our curve is slightly above the curve for
the medium budgets, and below it for lower ones.

Finally, the results of the oracle baseline indi-
cate the further potential of our approach: in all
cases, the oracle outperforms the original baseline
by 1.8% (AG) to 6.9% (MNLI), while being 4–6
times faster. These results motivate further explo-
ration of better early-exit criteria (see Section 6).
They also highlight the diversity of the different
classifiers. One might expect that the set of cor-
rect predictions by the smaller classifiers will be
contained in the corresponding sets of the larger
classifiers. The large differences between the orig-
inal baseline and our oracle indicate that this is
not the case, and motivate future research on effi-
cient ensemble methods which reuse much of the
computation across different models.

Extreme case analysis Our results hint that com-
bining the loss terms of each of our classifiers
hurts their performance compared to our baselines,

which use a single loss term. For the leftmost point
in our graphs—always selecting the most efficient
classifier—we observe a substantial drop in perfor-
mance compared to the corresponding most effi-
cient baseline, especially for the NLI datasets. For
our rightmost point (always selecting the most ac-
curate classifier), we observe a smaller drop, mostly
in SST and MNLI, compared to the corresponding
baseline, but also slower runtime, probably due to
the overhead of running the earlier classifiers.

These trends further highlight the potential of our
method, which is able to outperform the baseline
speed-accuracy curves despite the weaker starting
point. It also suggests ways to further improve our
method by studying more sophisticated methods to
combine the loss functions of our classifiers, and
encourage them to be as precise as our baselines.
We defer this to future work.

Similar training time Fine-tuning BERT-large
with our approach has a similar cost to fine-tuning
the standard BERT-large model, with a single out-
put layer. Table 2 shows the fine-tuning time of our
model and the standard BERT-large baseline. Our
model is not slower to fine-tune in four out of five
cases, and is even slightly faster in three of them.11

This property makes our approach appealing
compared to other approaches for reducing runtime
such as pruning or model distillation (Section 7).
These require, in addition to training the full model,
also training another model for each point along
the speed/accuracy curve, therefore substantially
increasing the overall training time required to gen-

11We note that computing the calibration temperature re-
quires additional time, which ranges between 3 minutes (SST)
to 24 minutes (MNLI).

6645

Figure 3: Test accuracy and processing time of our ap-
proach (blue squares, each point representing a differ-
ent confidence threshold), our standard baseline (std.,
green diamond), efficient baselines (eff., red dots), and
oracle baseline (orange star). Left and higher is better.
Our method presents similar or better speed/accuracy
tradeoff in almost all cases.

Dataset Training Time
Ours Standard

AG 052 053
IMDB 056 057
SST 004 004
SNLI 289 300
MNLI 852 835

Table 2: Fine-tuning times (in minutes) of our model
compared to the most accurate baseline: the standard
BERT-large model with a single output layer.

erate a full speed/accuracy tradeoff. In contrast, our
single model allows for full control over this trade-
off by adjusting the confidence threshold, without
increasing the training time compared to the stan-
dard, most accurate model.

Combination with model distillation A key
property of our approach is that it can be applied to
any multi-layer model. Particularly, it can be com-
bined with other methods for making models more
efficient, such as model distillation. To demon-
strate this, we repeat our IMDB experiments with
tinyBERT (Jiao et al., 2019), which is a distilled
version of BERT-base.12 We experiment with the
tinyBERT v2 6-layer-768dim version.13

Figure 4 shows our IMDB results. Much like
for BERT-large, our method works well for tiny-
BERT, providing a better speed/accuracy tradeoff
compared to the standard tinyBERT baseline and
the efficient tinyBERT baselines.

Second, while tinyBERT is a distilled version
of BERT-base, its speed-accuracy tradeoff is re-
markably similar to our BERT-large efficient base-
lines, which hints that our efficient baselines are a
simpler alternative to tinyBERT, and as effective
for model compression. Finally, our method ap-
plied to BERT-large provides the best overall speed-
accuracy tradeoff, especially with higher budgets.

6 A Criterion for “Difficulty”

Our approach is motivated by the inherent vari-
ance in the level of complexity of text instances,
and leverages this variance to obtain a better

12While we experimented with BERT-large and not BERT-
base, the point of this experiment is to illustrate the potential
of our method to be combined with distillation, and not to
directly compare to our main results.

13Jiao et al. (2019) also suggested a task-specific version of
tinyBERT which distills the model based on the downstream
task. For consistency with our BERT-large experiments, we
use the general version.

6646

Figure 4: Experiments with tinyBERT. Our method
(light-blue pentagons) provides a better speed-accuracy
tradeoff compared to the standard (light-green dia-
monds) and efficient (small light-red dots) baselines.
For comparison, we also show the results of our method
(blue squares) and our efficient baselines (large red
dots) with BERT-large. Our method applied to BERT-
large provides the overall best tradeoff.

Dataset Length Consistency

AG –0.13 0.37
IMDB –0.17 0.47
SST –0.19 0.36
SNLI –0.08 0.44
MNLI –0.13 0.39

Table 3: Spearman’s ρ correlation between confidence
levels for our most efficient classifier and two measures
of difficulty: document length and consistency. Confi-
dence is correlated reasonably with consistency across
all datasets. For all datasets except AG, confidence is
(loosely) negatively correlated with document length.
For the AG topic classification dataset, confidence is
(loosely) positively correlated. Results for the other lay-
ers show a similar trend.

speed/accuracy tradeoff compared to our baselines.
Our method also automatically identifies instances
on which smaller models are highly confident in
their predictions. Here we analyze our data using
other definitions of difficulty. Perhaps surprisingly,
we find that the various definitions are not strongly
correlated with ours. The results we observe below,
combined with the performance of our oracle base-
line (Section 5), motivate further study on more
advanced methods for early exiting, which could
potentially yield even larger computational gains.

Shorter is easier? We first consider the length
of instances: is our model more confident in its
decisions on short documents compared to longer
ones? To address this we compute Spearman’s

ρ correlation between the confidence level of our
most efficient classifier and the document’s length.

The results in Table 3 show that the correlations
across all datasets are generally low (|ρ| < 0.2).
Moreover, as expected, across four out of five
datasets, the (weak) correlation between confidence
and length is negative; our model is somewhat
more confident in its prediction on shorter doc-
uments. The fifth dataset (AG), shows the oppo-
site trend: confidence is positively correlated with
length. This discrepancy might be explained by
the nature of the tasks we consider. For instance,
IMDB and SST are sentiment analysis datasets,
where longer texts might include conflicting evi-
dence and thus be harder to classify. In contrast,
AG is a news topic detection dataset, where a con-
flict between topics is uncommon, and longer docu-
ments provide more opportunities to find the topic.

Consistency and difficulty Our next criterion
for “difficulty” is the consistency of model pre-
dictions. Toneva et al. (2019) proposed a notion
of “unforgettable” training instances, which once
the model has predicted correctly, it never predicts
incorrectly for the remainder of training iterations.
Such instances can be thought of as “easy” or mem-
orable examples. Similarly, Sakaguchi et al. (2019)
defined test instances as “predictable” if multiple
simple models predict them correctly. Inspired
by these works, we define the criterion of consis-
tency: whether all classifiers in our model agree
on the prediction of a given instance, regardless of
whether it is correct or not. Table 3 shows Spear-
man’s ρ correlation between the confidence of the
most efficient classifier and this measure of con-
sistency. Our analysis reveals a medium correla-
tion between confidence and consistency across all
datasets (0.37 ≤ ρ ≤ 0.47), which indicates that
the measure of confidence generally agrees with
the measure of consistency.

Comparison with hypothesis-only criteria Gu-
rurangan et al. (2018) and Poliak et al. (2018)
showed that some NLI instances can be solved
by only looking at the hypothesis—these were arti-
facts of the annotation process. They argued that
such instances are “easier” for machines, compared
to those which required access to the full input,
which they considered “harder.” Table 4 shows the
correlation between the confidence of each of our
classifiers on the SNLI and MNLI dataset with the
confidence of a hypothesis-only classifier. Simi-

6647

Layer SNLI MNLI
Hyp.-Only IAC Hyp.-Only IAC

0 0.39 0.14 0.37 0.08
4 0.31 0.25 0.35 0.21
12 0.31 0.31 0.32 0.27
23 0.28 0.32 0.30 0.32

Table 4: Spearman’s ρ correlation between confidence
levels for our classifiers (of different layers) on the val-
idation sets of SNLI and MNLI, and two measures of
difficulty: hypothesis-only classifier predictions (Hyp.-
Only) and inter-annotator consensus (IAC).

larly to the consistency results, we see that the con-
fidence of our most efficient classifier is reasonably
correlated with the predictions of the hypothesis-
only classifier. As expected, as we move to larger,
more accurate classifiers, which presumably are
able to make successful predictions on harder in-
stances, this correlation decreases.

Inter-annotator consensus Both NLI datasets
include labels from five different annotators. We
treat the inter-annotator consensus (IAC) as another
measure of difficulty: the higher the consensus is,
the easier the instance. We compute IAC for each
example as the fraction of annotators who agreed
on the majority label, hence this number ranges
from 0.6 to 1.0 for five annotators. Table 4 shows
the correlation between the confidence of our clas-
sifiers with the IAC measure on SNLI and MNLI.
The correlation with our most efficient classifiers
is rather weak, only 0.08 and 0.14. Surprisingly, as
we move to larger models, the correlation increases,
up to 0.32 for the most accurate classifiers. This
indicates that the two measures perhaps capture a
different notion of difficulty.

Confidence across labels Figure 5 shows the
proportion of instances in our validation set that are
predicted with high confidence by our calibrated
model (90% threshold) for each dataset, label, and
model size. We first note that across all datasets,
and almost all model sizes, different labels are not
predicted with the same level of confidence. For in-
stance, for AG, the layer 0 model predicts the tech
label with 87.8% average confidence, compared
to 96.8% for the sports label. Moreover, in accor-
dance with the overall performance, across almost
all datasets and model sizes, the confidence levels
increase as the models get bigger in size. Finally,
in some cases, as we move towards larger models,

the gaps in confidence close (e.g., IMDB and SST),
although the relative ordering hardly ever changes.

Two potential explanations come up when ob-
serving these results; either some labels are easier
to predict than others (and thus the models are more
confident when predicting them), or the models are
biased towards some classes compared to others.
To help differentiate between these two hypotheses,
we plot in Figure 6 the average confidence level and
the average F1 score of the most efficient classifier
across labels and datasets.

The plot indicates that both hypotheses are cor-
rect to some degree. Some labels, such as sports
for AG and positive for IMDB, are both predicted
with high confidence, and solved with high accu-
racy. In contrast, our model is overconfident in its
prediction of some labels (business for AG, posi-
tive for SST), and underconfident in others (tech for
AG, entailment for MNLI). These findings might
indicate that while our method is designed to be
globally calibrated, it is not necessarily calibrated
for each label individually. Such observations re-
late to existing concerns regarding fairness when
using calibrated classifiers (Pleiss et al., 2017).

7 Related Work

Methods for making inference more efficient have
received considerable attention in NLP over the
years (Eisner and Satta, 1999; Goldberg and El-
hadad, 2010, inter alia). As the field has converged
on deep neural architecture solutions, most efforts
focus on making models smaller (in terms of model
parameters) in order to save space as well as poten-
tially speed up inference.

In model distillation (Hinton et al., 2014) a
smaller model (the student) is trained to mimic the
behavior or structure of the original, larger model
(the teacher). The result is typically a student that
is as accurate as the teacher, but smaller and faster
(Kim and Rush, 2016; Jiao et al., 2019; Tang et al.,
2019; Sanh et al., 2019). Pruning (LeCun et al.,
1990) removes some of the weights in the network,
resulting in a smaller, potentially faster network.
The basic pruning approach removes individual
weights from the network (Swayamdipta et al.,
2018; Gale et al., 2019). More sophisticated ap-
proaches induce structured sparsity, which removes
full blocks (Michel et al., 2019; Voita et al., 2019;
Dodge et al., 2019b). Liu et al. (2018) and Fan et al.
(2020) pruned deep models by applying dropout to
different layers, which allows dynamic control of

6648

Figure 5: Instances with different labels are predicted with different degrees of confidence.

Figure 6: Comparing confidence levels and F1 scores of our most efficient classifier across datasets and labels.
High confidence by the model is sometimes explained by “easy” classes that are predicted with high F1 (e.g.,
sports in AG). Other cases might stem from biases of the model which make it overconfident despite the label
being harder than other labels (e.g., positive in SST).

the speed/accuracy tradeoff of the model without
retraining. Our method also allows for controlling
this tradeoff with a single training pass, and yields
computational savings in an orthogonal manner: by
making early exit decisions.

Quantization is another popular method to de-
crease model size, which reduces the numerical
precision of the model’s weights, and therefore
both speeds up numerical operations and reduces
model size (Wróbel et al., 2018; Shen et al., 2019;
Zafrir et al., 2019).

Some works introduced methods to allocate
fewer resources to certain parts of the input (e.g.,
certain words), thereby potentially reducing train-
ing and/or inference time (Graves, 2016; Seo et al.,
2018). Our method also puts less resources into
some of the input, but does so at the document level
rather than for individual tokens.

A few concurrent works have explored similar
ideas for dynamic early exits in the transformer
model. Elbayad et al. (2020) and Dabre et al.
(2020) introduced early stopping for sequence-to-
sequence tasks (e.g., machine translation). Bapna
et al. (2020) modify the transformer architecture
with “control symbols” which determine whether
components are short-circuited to optimize bud-
get. Finally, Liu et al. (2020) investigated several
inference-time cost optimizations (including early
stopping) in a multilingual setting.

Several computer vision works explored similar
ideas to the one in this paper. Wang et al. (2018) in-

troduced a method for dynamically skipping convo-
lutional layers. Bolukbasi et al. (2017) and Huang
et al. (2018) learned early exit policies for com-
puter vision architectures, observing substantial
computational gains.

8 Conclusion

We presented a method that improves the
speed/accuracy tradeoff for inference using pre-
trained language models. Our method makes early
exits for simple instances that require less process-
ing, and thereby avoids running many of the lay-
ers of the model. Experiments with BERT-large
on five text classification and NLI datasets yield
substantially faster inference compared to the stan-
dard approach, up to 80% faster while maintaining
similar performance. Our approach requires nei-
ther additional training time nor significant num-
ber of additional parameters compared to the stan-
dard approach. It also allows for controlling the
speed/accuracy tradeoff using a single model, with-
out retraining it for any point along the curve.

Acknowledgments

The authors thank the members of Noah’s ARK
at the University of Washington, the researchers
at the Allen Institute for AI, and the anonymous
reviewers for their valuable feedback.

6649

References
Dario Amodei and Danny Hernandez. 2018. AI and

compute. Blog post.

Ankur Bapna, Naveen Arivazhagan, and Orhan Firat.
2020. Controlling computation versus quality for
neural sequence models. arXiv:2002.07106.

Tolga Bolukbasi, Joseph Wang, Ofer Dekel, and
Venkatesh Saligrama. 2017. Adaptive neural net-
works for efficient inference. In Proc. of ICML.

Samuel R. Bowman, Gabor Angeli, Christopher Potts,
and Christopher D. Manning. 2015. A large anno-
tated corpus for learning natural language inference.
In Proc. of EMNLP.

Raj Dabre, Raphael Rubino, and Atsushi Fujita. 2020.
Balancing cost and benefit with tied-multi transform-
ers. arXiv:2002.08614.

Ido Dagan, Oren Glickman, and Bernardo Magnini.
2005. The PASCAL recognising textual entailment
challenge. In Proc. of MLCW.

Morris H. DeGroot and Stephen E. Fienberg. 1983.
The comparison and evaluation of forecasters. Jour-
nal of the Royal Statistical Society: Series D (The
Statistician), 32(1-2):12–22.

Shrey Desai and Greg Durrett. 2020. Calibration of
pre-trained transformers. arXiv:2003.07892.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proc. of NAACL.

Jesse Dodge, Suchin Gururangan, Dallas Card, Roy
Schwartz, and Noah A. Smith. 2019a. Show your
work: Improved reporting of experimental results.
In Proc. of EMNLP.

Jesse Dodge, Roy Schwartz, Hao Peng, and Noah A.
Smith. 2019b. RNN architecture learning with
sparse regularization. In Proc. of EMNLP.

Jason Eisner and Giorgio Satta. 1999. Efficient pars-
ing for bilexical context-free grammars and head au-
tomaton grammars. In Proc. of ACL.

Maha Elbayad, , Jiatao Gu, Edouard Grave, and
Michael Auli. 2020. Depth-adaptive transformer. In
Proc. of ICLR.

Angela Fan, Edouard Grave, and Armand Joulin. 2020.
Reducing transformer depth on demand with struc-
tured dropout. In Proc. of ICLR.

Trevor Gale, Erich Elsen, and Sara Hooker. 2019.
The state of sparsity in deep neural networks.
arXiv:1902.09574.

Matt Gardner, Joel Grus, Mark Neumann, Oyvind
Tafjord, Pradeep Dasigi, Nelson F. Liu, Matthew Pe-
ters, Michael Schmitz, and Luke Zettlemoyer. 2018.
AllenNLP: A deep semantic natural language pro-
cessing platform. In Proc. of NLP-OSS.

Yoav Goldberg and Michael Elhadad. 2010. An effi-
cient algorithm for easy-first non-directional depen-
dency parsing. In Proc. of NAACL.

Alex Graves. 2016. Adaptive computation time for re-
current neural networks. arXiv:1603.08983.

Chuan Guo, Geoff Pleiss, Yu Sun, and Kilian Q. Wein-
berger. 2017. On calibration of modern neural net-
works. In Proc. of ICML.

Suchin Gururangan, Swabha Swayamdipta, Omer
Levy, Roy Schwartz, Samuel Bowman, and Noah A.
Smith. 2018. Annotation artifacts in natural lan-
guage inference data. In Proc. of NAACL.

Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. 2014.
Distilling the knowledge in a neural network. In
Proc. of NeurIPS Deep Learning Workshop.

Gao Huang, Danlu Chen, Tianhong Li, Felix Wu, Lau-
rens van der Maaten, and Kilian Q. Weinberger.
2018. Multi-scale dense networks for resource ef-
ficient image classification. In Proc. of ICLR.

Heinrich Jiang, Been Kim, Melody Y. Guan, and Maya
Gupta. 2018. To trust or not to trust a classifier. In
Proc. of NeurIPS.

Xiaoqi Jiao, Yichun Yin, Lifeng Shang, Xin Jiang,
Xiao Chen, Linlin Li, Fang Wang, and Qun Liu.
2019. TinyBERT: Distilling BERT for natural lan-
guage understanding. arXiv:1909.10351.

Yoon Kim and Alexander M. Rush. 2016. Sequence-
level knowledge distillation. In Proc. of EMNLP.

Ludmila I. Kuncheva and Christopher J. Whitaker.
2003. Measures of diversity in classifier ensembles
and their relationship with the ensemble accuracy.
Machine learning, 51(2):181–207.

Yann LeCun, John S. Denker, and Sara A. Solla. 1990.
Optimal brain damage. In Proc. of NeurIPS.

Liyuan Liu, Xiang Ren, Jingbo Shang, Xiaotao Gu,
Jian Peng, and Jiawei Han. 2018. Efficient contextu-
alized representation: Language model pruning for
sequence labeling. In Proc. of EMNLP.

Weijie Liu, Peng Zhou, Zhe Zhao, Zhiruo Wang,
Haotang Deng, and Qi Ju. 2020. FastBERT: a self-
distilling BERT with adaptive inference time. In
Proc. of ACL.

Andrew L. Maas, Raymond E. Daly, Peter T. Pham,
Dan Huang, Andrew Y. Ng, and Christopher Potts.
2011. Learning word vectors for sentiment analysis.
In Proc. of ACL.

Paul Michel, Omer Levy, and Graham Neubig. 2019.
Are sixteen heads really better than one? In Proc. of
NeurIPS.

Matthew Peters, Mark Neumann, Mohit Iyyer, Matt
Gardner, Christopher Clark, Kenton Lee, and Luke
Zettlemoyer. 2018. Deep contextualized word repre-
sentations. In Proc. of NAACL.

https://openai.com/blog/ai-and-compute/
https://openai.com/blog/ai-and-compute/
https://arxiv.org/abs/2002.07106
https://arxiv.org/abs/2002.07106
https://doi.org/10.18653/v1/D15-1075
https://doi.org/10.18653/v1/D15-1075
https://arxiv.org/abs/2002.08614
https://arxiv.org/abs/2002.08614
https://arxiv.org/abs/2003.07892
https://arxiv.org/abs/2003.07892
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/D19-1224
https://doi.org/10.18653/v1/D19-1224
https://doi.org/10.18653/v1/D19-1110
https://doi.org/10.18653/v1/D19-1110
https://doi.org/10.3115/1034678.1034748
https://doi.org/10.3115/1034678.1034748
https://doi.org/10.3115/1034678.1034748
https://arxiv.org/abs/1910.10073
https://arxiv.org/abs/1909.11556
https://arxiv.org/abs/1909.11556
https://arxiv.org/abs/1902.09574
https://doi.org/10.18653/v1/w18-2501
https://doi.org/10.18653/v1/w18-2501
https://www.aclweb.org/anthology/N10-1115
https://www.aclweb.org/anthology/N10-1115
https://www.aclweb.org/anthology/N10-1115
https://arxiv.org/abs/1603.08983
https://arxiv.org/abs/1603.08983
http://arxiv.org/abs/1803.02324
http://arxiv.org/abs/1803.02324
https://arxiv.org/abs/1909.10351
https://arxiv.org/abs/1909.10351
https://doi.org/10.18653/v1/d16-1139
https://doi.org/10.18653/v1/d16-1139
https://doi.org/10.18653/v1/D18-1153
https://doi.org/10.18653/v1/D18-1153
https://doi.org/10.18653/v1/D18-1153
https://www.aclweb.org/anthology/P11-1015
http://aclweb.org/anthology/N18-1202
http://aclweb.org/anthology/N18-1202

6650

Geoff Pleiss, Manish Raghavan, Felix Wu, Jon Klein-
berg, and Kilian Q. Weinberger. 2017. On fairness
and calibration. In Proc. of NeurIPS.

Adam Poliak, Jason Naradowsky, Aparajita Haldar,
Rachel Rudinger, and Benjamin Van Durme. 2018.
Hypothesis Only Baselines in Natural Language In-
ference. In Proc. of ∗SEM.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan,
Dario Amodei, and Ilya Sutskever. 2019. Language
models are unsupervised multitask learners. Ope-
nAI Blog.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine
Lee, Sharan Narang, Michael Matena, Yanqi Zhou,
Wei Li, and Peter J. Liu. 2019. Exploring the limits
of transfer learning with a unified text-to-text trans-
former. arXiv:1910.10683.

Keisuke Sakaguchi, Ronan Le Bras, Chandra Bhaga-
vatula, and Yejin Choi. 2019. WinoGrande: An
adversarial winograd schema challenge at scale.
arXiv:1907.10641.

Victor Sanh, Lysandre Debut, Julien Chaumond, and
Thomas Wolf. 2019. DistilBERT, a distilled version
of BERT: smaller, faster, cheaper and lighter. In
Proc. of EMC2.

Roy Schwartz, Jesse Dodge, Noah A. Smith, and Oren
Etzioni. 2019. Green AI. arXiv:1907.10597.

Minjoon Seo, Sewon Min, Ali Farhadi, and Hannaneh
Hajishirzi. 2018. Neural speed reading via skim-
RNN. In Proc. of ICLR.

Sheng Shen, Zhen Dong, Jiayu Ye, Linjian Ma, Zhewei
Yao, Amir Gholami, Michael W. Mahoney, and Kurt
Keutzer. 2019. Q-BERT: Hessian based ultra low
precision quantization of BERT. arXiv:1909.05840.

Richard Socher, Alex Perelygin, Jean Wu, Jason
Chuang, Christopher D. Manning, Andrew Ng, and
Christopher Potts. 2013. Recursive deep models
for semantic compositionality over a sentiment tree-
bank. In Proc. of EMNLP.

Swabha Swayamdipta, Ankur P. Parikh, and Tom
Kwiatkowski. 2018. Multi-mention learning for
reading comprehension with neural cascades. In
Proc. of ICLR.

Raphael Tang, Yao Lu, Linqing Liu, Lili Mou, Olga
Vechtomova, and Jimmy Lin. 2019. Distilling task-
specific knowledge from BERT into simple neural
networks. arXiv:1903.12136.

Mariya Toneva, Alessandro Sordoni, Remi Tachet des
Combes, Adam Trischler, Yoshua Bengio, and Geof-
frey J. Gordon. 2019. An empirical study of exam-
ple forgetting during deep neural network learning.
In Proc. of ICLR.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Proc. of NeurIPS.

Elena Voita, David Talbot, Fedor Moiseev, Rico Sen-
nrich, and Ivan Titov. 2019. Analyzing multi-head
self-attention: Specialized heads do the heavy lift-
ing, the rest can be pruned. In Proc. of ACL.

Xin Wang, Fisher Yu, Zi-Yi Dou, Trevor Darrell, and
Joseph E. Gonzalez. 2018. SkipNet: Learning dy-
namic routing in convolutional networks. In Proc.
of ECCV.

Adina Williams, Nikita Nangia, and Samuel R Bow-
man. 2018. A broad-coverage challenge corpus for
sentence understanding through inference. In Proc.
of NAACL.

David H. Wolpert. 1992. Stacked generalization. Neu-
ral Networks, 5:241–259.

Krzysztof Wróbel, Marcin Pietroń, Maciej Wielgosz,
Michał Karwatowski, and Kazimierz Wiatr. 2018.
Convolutional neural network compression for nat-
ural language processing. arXiv:1805.10796.

Ofir Zafrir, Guy Boudoukh, Peter Izsak, and Moshe
Wasserblat. 2019. Q8BERT: Quantized 8bit BERT.
In Proc. of EMC2.

Xiang Zhang, Junbo Zhao, and Yann LeCun. 2015.
Character-level convolutional networks for text clas-
sification. In Proc. of NeurIPS.

https://doi.org/10.18653/v1/S18-2023
https://doi.org/10.18653/v1/S18-2023
https://d4mucfpksywv.cloudfront.net/better-language-models/language_models_are_unsupervised_multitask_learners.pdf
https://d4mucfpksywv.cloudfront.net/better-language-models/language_models_are_unsupervised_multitask_learners.pdf
https://arxiv.org/abs/1910.10683
https://arxiv.org/abs/1910.10683
https://arxiv.org/abs/1910.10683
https://arxiv.org/abs/1907.10641
https://arxiv.org/abs/1907.10641
https://arxiv.org/abs/1907.10597
https://arxiv.org/abs/1909.05840
https://arxiv.org/abs/1909.05840
http://www.aclweb.org/anthology/D13-1170
http://www.aclweb.org/anthology/D13-1170
http://www.aclweb.org/anthology/D13-1170
https://openreview.net/forum?id=HyRnez-RW
https://openreview.net/forum?id=HyRnez-RW
https://arxiv.org/abs/1903.12136
https://arxiv.org/abs/1903.12136
https://arxiv.org/abs/1903.12136
https://doi.org/10.18653/v1/P19-1580
https://doi.org/10.18653/v1/P19-1580
https://doi.org/10.18653/v1/P19-1580
https://doi.org/10.1007/978-3-030-01261-8_25
https://doi.org/10.1007/978-3-030-01261-8_25
https://doi.org/10.18653/v1/N18-1101
https://doi.org/10.18653/v1/N18-1101
https://arxiv.org/abs/1805.10796
https://arxiv.org/abs/1805.10796

6651

A Implementation Details

We fine-tune both our model and our baselines
with dropout 0.1. We run all our experiments on
a single Quadro RTX 8000 GPU. Our model is
implement using the AllenNLP library (Gardner
et al., 2018).14 Our calibration code relies on the
implementation of Guo et al. (2017).15

We fine-tune text classification models for 2
epochs and NLI models for 4 epochs. We run ten
trials of random search on the validation set for
both our model and our baselines to select both a
learning rate among {0.00002, 0.00003, 0.00005}
and a random seed. For our baselines, we select
the highest performing model on the validation set
among the ten runs. For our model, we select the
one with the highest performance averaged across
all thresholds explored (we use 0% and 5% inter-
vals in the range [55%, 100%]) on the validation
set.

B Validation Results

Figure 7 shows the validation results of our experi-
ments.

14https://allennlp.org
15https://github.com/gpleiss/

temperature_scaling

Figure 7: Validation accuracy and processing time of
our approach (blue line) and our standard baseline (std.,
green diamond), our efficient baselines (eff., red dots)
and our oracle (orange star). Left and higher is better.

https://allennlp.org
https://github.com/gpleiss/temperature_scaling
https://github.com/gpleiss/temperature_scaling

