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Abstract
Recent neural models for relation extraction
with distant supervision alleviate the impact of
irrelevant sentences in a bag by learning impor-
tance weights for the sentences. Efforts thus
far have focused on improving extraction ac-
curacy but little is known about their explain-
ability. In this work we annotate a test set
with ground-truth sentence-level explanations
to evaluate the quality of explanations afforded
by the relation extraction models. We demon-
strate that replacing the entity mentions in the
sentences with their fine-grained entity types
not only enhances extraction accuracy but also
improves explanation. We also propose to au-
tomatically generate “distractor” sentences to
augment the bags and train the model to ig-
nore the distractors. Evaluations on the widely
used FB-NYT dataset show that our methods
achieve new state-of-the-art accuracy while
improving model explainability.

1 Introduction

Relation extraction with distant supervision asso-
ciates a pair of entities with a bag of sentences,
each containing mentions of both entities. The
bag is tagged with relations between the pair in
a Knowledge Base (KB), without explicitly indi-
cating which sentence(s) support the relation(s).
This method avoids the burden of manual anno-
tations, but presents inherent ambiguity, creating
challenges for learning.

To alleviate the impact of the irrelevant sentences
many approaches have been proposed including
models based on attention (Zeng et al., 2015; Lin
et al., 2016; Liu et al., 2017; Luo et al., 2017; Du
et al., 2018; Wang et al., 2018; Peng and Denilson,
2019; Bai and Ritter, 2019), approaches that use
additional resources (Vashishth et al., 2018; Liu
et al., 2018) and methods that utilize supervision
data (Pershina et al., 2014; Angeli et al., 2014; Belt-
agy et al., 2019). These studies primarily focus on

improving relation extraction accuracy and little is
known about whether the models are making right
decision for the right reason or because of some
irrelevant biases (Agrawal et al., 2016; Gururangan
et al., 2018; Ghaeini et al., 2019).

This paper examines two strong baseline relation
extraction models with several explanation mecha-
nisms. We manually annotated a test set from the
widely used FB-NYT dataset with ground truth ex-
planations to evaluate the quality of the explanation
afforded by these models. We also introduce two
different methods for improving relation extrac-
tion. First, we demonstrate that replacing the entity
mentions with their fine-grained entity types for
sentence representation leads to improvement in
both the extract accuracy and model explainability.
Second, we augment the bags with automatically
generated “distractor” sentences (i.e., sentences
that contain no supporting information for the re-
lation) and train the model to appropriately ignore
the irrelevant information. Our evaluation on the
widely used FB-NYT dataset verifies that the pro-
posed methods achieve the new state of the art for
the extraction performance along with improved
model explainability.

2 Problem Setup

Given entity pair (ei, ej), we form a bag Bi,j =
{s1, . . . sNij} with Nij sentences that contain men-
tions of both entities and label it by the set of rela-
tions between ei and ej from the KB. Neural mod-
els for relation extraction encode each sentences
into a vector representation and a bag Bi,j is thus
represented by {x1, . . . xNij} where xi ∈ Rd.

Given a set of bags and the associated labels,
the training objective is to learn a model that pre-
dicts the probability P (r = k|Bi,j) that relation
k exists between ei and ej based on Bi,j , where
k ∈ 1 . . .K and K is the total number of relations
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in the KB. There are zero to multiple possible re-
lation labels for each bag. Importantly, only some
sentences in the bag express any of the relations
and the others are irrelevant (provide no informa-
tion regarding the relations), but such sentences are
not labeled.

3 Baseline Models

We consider two baselines. The first is DirectSup,
a recent model achieving the state-of-the-art perfor-
mance by utilizing auxiliary supervision (Beltagy
et al., 2019). The second baseline (CNNs+ATT)
revamps the classic attention based method by Lin
et al. (2016) but adopts the same sentence encoder
as DirectSup for ease of comparisons. In this work,
we add a ReLU at the end of the sentence encoder
(Beltagy et al., 2019) to produce positive sentence
representations. See (Beltagy et al., 2019) for de-
tailed information regarding the sentence encoder.
DirectSup. Given a bag of sentences, DirectSup
encodes each sentence using CNNs with different
filter sizes. The outputs of the CNNs with different
filter sizes are concatenated to produce the encod-
ing of the sentence.

Given a bag B and the encoding of its sentences
{x1, x2, ..., xN}, DirectSup assigns an importance
weight for each sentence based on the output of a
binary classifier learned from an additional direct
supervision data in a multi-task manner. Given a
sentence encoding xn, the binary classifier provides
a weight αn ∈ [0, 1] indicating the likelihood that
xn expresses some form of relations in the KB.
As a result, for a bag Bi,j , we have importance
weights {α1, . . . , αN}. It then produces a single
bag representation as follows:

x̄ = Max-pool({α1x1, . . . , αnxN}) (1)

and the prediction for relation k is given by:

P (r = k|B) = σ(x̄· rk + bk) (2)

where rk is an embedding of relation k, bk is a bias
variable and σ is the Sigmoid function.
CNNs+ATT. This model uses the same sentence
encoder as DirectSup but differs in the attention
mechanism used to decide sentence importance.
Specifically, it follows Lin et al. (2016) and com-
putes the importance weights of the sentences in
bag B with encodings {x1, . . . , xN} as follows:

αk,n =
exp(xnAqk)∑N
i=1 exp(xiAqk)

(3)

where qk is a learned query vector associated with
relation k and A is a diagonal matrix.

Given {αk,1, ..., αk,N}, we compute a bag repre-
sentation specific for relation k by:

x̄k =

N∑
n=1

αk,nxn (4)

and the prediction for relation k is given by:

P (r = k|B) = σ(x̄k· rk + bk) (5)

where rk is relation k’s embedding and bk is the
bias.
Entity embedding. Prior work has demonstrated
that incorporating entity embeddings into the rela-
tion extraction model leads to improved accuracy
(Ji et al., 2017; Beltagy et al., 2019). Here we
also consider this strategy with the baseline models.
Specifically, let vi and vj be the entity embedding
of ei and ej , we concatenate the bag representations
x̄ with vi− vj and vi ◦ vj , where ◦ is element-wise
product. We then apply a linear project layer with
ReLU to produce a new bag representation for final
prediction with Eq. 2 and 5.

For any entity ei its embedding vector vi is ob-
tained by concatenating the average of its skip-
gram (Mikolov et al., 2013) word embeddings and
the embeddings produced by Zhang et al. (2019)
(produced by using TransE on Wikipedia factual
tuples).
Training objective. For all the models in this work
we use the binary cross entropy loss function for
training:

l = −
∑
Bi,j

K∑
k=1

1i,j,k log P (r = k|Bi,j)+

(1− 1i,j,k) log (1− P (r = k|Bi,j))

(6)

where 1i,j,k is an indicator function that takes value
1 if relation k exists for bag Bi,j .

4 Explanation Mechanisms

The importance weights (α’s, aka attention), gener-
ated by the models can be interpreted as explana-
tions. However, recent studies (Ghaeini et al., 2018;
Jain et al., 2019; Wiegreffe and Pinter, 2019) have
questioned the validity of attention as a faithful ex-
planation of model’s behavior. Thus we consider
the following additional explanation mechanisms:
Saliency. Recent works show that a model’s pre-
diction can be explained by examining the input
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saliency, based on the gradient of the output w.r.t.
the inputs (Simonyan et al., 2012; Ross et al., 2017;
Ghaeini et al., 2019). We define the saliency of
sentence n for relation k, denoted by Sxn,k, as the
L1 norm of the gradient of relation k logit ok with
respect to xn.(Appendix. A.1).
Gradient × input. This is a commonly used mea-
sure for input attributions (Shrikumar et al., 2016;
Selvaraju et al., 2019). We will refer to this mea-
sure as GIxn,k, computed as

∑
i xn[i]× ∂ok

∂xn
[i].

Leave One Out (loo). This measures the sensitiv-
ity of ok to the removal of a sentence. We refer
to this measure as looxn,k = (ok − ok,−n), where
ok,−n is the new logit of relation k after removing
sentence xn from its bag.

5 Proposed Methods

We propose two different approaches for improving
relation extraction. The first method we propose,
introduces a subtle change to the representation of
the sentences, which lead to higher performance
and better explanation quality. We further propose
to automatically generate “distractor” sentences
and train the model to appropriately ignore them.
Sentence representation. Each sentence in a bag
contains entity mentions mi and mj for entities ei
and ej respectively. In prior work mi and mj are
kept unchanged (Lin et al., 2016; Beltagy et al.,
2019). We argue that when entity mentions are
used to compute the sentence representation, they
provide such rich information that the model may
not need to look at the rest of the sentence to de-
duce a relation. To ensure that our predictions are
supported by appropriate sentences, we need to
remove this effect. We propose to replace the en-
tity mentions with their Fine-Grained Entity Types
(FGET) Ling and Weld (2012) to force the model
to identify the relations through the sentences.
Learning from distractors. Prior work studied
learning from human provided rationales (Lei et al.,
2016; Ross et al., 2017; Bao et al., 2018; Ghaeini
et al., 2019) in order to improve model explain-
ability. However, human rationales are expensive
to acquire. In this work we propose to learn from
automatically generated “distractor” sentences.

Let Bi,j be a positive training bag (contains at
least one relation) with entities (ei, ej) of FGET
(ti, tj). Let Rij(|Rij | > 1) be the set of annotated
relations for Bi,j . For each k in Rij , we sample a
“distractor” sentence s′k from the set of sentences
in the training set such that 1) it belongs to a bag

whose FGET is (ti, tj) 2) the bag is not annotated
with relation label k. If s′k is not found this way, we
simply choose a random sentence from a random
negative bag (bag with no relation). Given s′k, we
replace its entity mentions with ei and ej (or ti and
tj for FGET-based sentence representation) of a
sentence in Bi,j and add it to the bag, resulting in
an augmented bag B′i,j for relation k.

To learn from the augmented bags, we feed B′i,j
into the model and the goal is to lower the contri-
bution of the distractor sentence in relation to the
original sentences in the bag. Specifically, we use
GI to measure the sentence-level contribution and
define the distractor loss for relation k as follows:

l′d,k = max(0, γ +GIx′
k,k
− max

x∈Bi,j

GIx,k)

+|GIx′
k,k
|

(7)

where x′k is the encoding of distractor sentence s′k
and γ is a hyper-parameter for margin. The first
term ensures that the contribution of the distractor
is lower than the maximum contribution of all the
sentences in the original bag and the second term
reduces the absolute contribution of the distractor.
Although we use GI in Eq.7, other explanation
measures such as saliency or the positive portion of
the contributions can also be applied here. More-
over a more advanced mechanism for generating
distractors will likely lead to a higher performance.

We hence update the loss in Eq. 6 with:

lm = l + λl′d (8)

where l′d =
∑

k l
′
d,k and λ tradeoffs the regular

learning loss with the distractor loss.

6 Experiments

In this section, we empirically evaluate our pro-
posed methods both in terms of their relation ex-
traction performance and their explainability.

6.1 Dataset and Setup
Dataset. Similar to our baselines and prior work,
we use the modified version of FB-NYT dataset.
The original FB-NYT dataset was built by Riedel
et al. (2010) on New York Times articles which
was aligned to Freebase facts. It later was modified
by Lin et al. (2016). There are 52 relations in this
dataset where “place lived”, “captial”, “neighbor-
hood of”, “natinality” and “location” are the most
frequent relations. Tab. 1 shows the size of the
modified dataset.
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Figure 1: PR without entity
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Figure 2: PR with entity

Train Test
Sentences 472,963 172,448
Positive bags 16,625 1,950
Negative bags 236,811 94,917

Table 1: FB-NYT modified dataset.

Setup and Training. All models are implemented
in PyTorch, trained with a Adam optimizer with
learning rate 0.001 for a maximum of 30 epochs.
We use 300-d skip-gram (Mikolov et al., 2013)
word embeddings and FGET embeddings and 5-d
position embedding. During training we freeze the
word and entity embeddings. All reported results
are averaged over three different random runs. We
train on 90% of the training set and keep the re-
maining 10% for validation. We select λ from the
set {0.01, 0.1, 1.0, 10.0, 100.0} and set λ = 1.0
based on validation AUC and the margin is fixed at
γ = 0.00001.

Ground-truth explanations. There are 1950 pos-
itive bags (6444 sentences) in the test split of FB-
NYT. For each pair of sentence-relation in a bag
we annotate whether the sentence entails the rela-
tion or not. Based on the annotations, we extract a
set called expl-eval (see Appendix A.2 for details)
including tuples of (bag-id, relation, positive sen-
tence in bag, negative sentence in bag). Each tuple
provides a desired ordering of two sentences when
measuring their importance to the model. expl-eval
is then used to compute the Kendall Tau correlation
between the annotation and the explanations, which
measures how consistently the importance weights
ranks the sentences compared to the ground truth.

model AUC (-E) AUC (+E)
CNNs+ATT 25.1 -
DirectSup 26.4 28.1
CNNs+ATT +F 26.1 31.5
DirectSup +F 26.9 33.3
CNNs+ATT +FE 27.4 33.1
DirectSup +FE 27.6 33.4
CNNs+ATT +LD 27.1 33.6
CNNs+ATT +F +LD 27.7 33.9
DirectSup +F +LD 27.8 34.1
F: Replace entity mention with FGET

FE: Replace entity mention with concatenation of FGET and entity mention

LD: Learning from distractor

Table 2: AUC results on FB-NYT.

6.2 Relation Extraction Performance

Similar to prior work we use precision-recall (PR)
curves to characterize the extraction performance
and report the area under the PR curve (AUC) up to
0.4 recall. Tab. 2 reports the AUCs of the baselines
and different variants of our proposed models with
(+E) and without (-E) incorporating entity embed-
dings.

Specifically, we consider two different ways of
incorporating the FGET representations. Rows 3-4
show the AUCs of the two baseline models when
we replace entity mentions with their FGET (+F),
whereas rows 5-6 show the AUCs when we con-
catenate the FGET with the entity mentions (+FE).
From the results we can see that both baselines see
clear performance gain from incorporating FGET
into the representations. Combining FGET with
entity mention (+FE) achieves higher performance
than using only FGET (+F), but our hypothesis is
that the former will lead to less explainable models,
which we will examine in the next section. Finally
the last three rows of the table show that adding
LD to different base models can further improve



6492

model loo (H) loo (L) Sxn,k (H) Sxn,k (L) GIxn,k (H) GIxn,k (L) αxn (H) αxn (L)
CNNs+ATT 0.16 -0.08 0.19 -0.02 0.20 0.04 0.69 0.21
DirectSup 0.19 0.12 0.08 0.15 0.29 0.19 0.26 -0.12
CNNs+ATT +F 0.21 0.10 0.36 0.03 0.23 0.00 0.73 0.11
DirectSup +F 0.24 0.15 0.31 -0.19 0.40 -0.17 0.28 0.15
CNNs+ATT +FE 0.01 -0.11 0.21 -0.14 0.20 -0.20 0.24 0.01
DirectSup +FE 0.14 -.12 0.19 -0.10 0.29 0.06 0.17 -0.11
CNNs+ATT +LD 0.18 -0.01 0.22 0.10 0.21 0 0.67 0.11
CNNs+ATT +LD +F 0.22 -0.11 0.43 0.09 0.28 0.07 0.70 0.12
DirectSup +LD +F 0.23 0.14 0.38 0.01 0.49 0.20 0.45 0.02
H: High confidence P (r) ∈ [0.76, 1.0]

L: Low confidence P (r) ∈ [0, 0.25]

Table 3: Kendall correlations for top confidence and least confidence range.

the AUCs.
Similar to prior work, we observe that incorpo-

rating entity embeddings(+E) to the model leads to
substantial performance gain across the board. We
also observe very similar performance gain when
adding FGET and LD to the base models both with
and without entity embeddings. Our best model
achieved an AUC of 0.341, which improves the
previous state-of-the-art by 5.7%.

6.3 Evaluation of Explanations

We apply the explanation mechanisms described in
Section 4 to produce sentence importance scores
for the test set and compute the Kendall Tau corre-
lations for the importance scores using expl-eval.

For each model, to understand its behavior when
it predicts correctly versus incorrectly, we consider
the subset H (L) of bags/relations that the model
outputs high (low) probability, i.e., p ∈ [0.76, 1]
([0, 0.25]), for the correct relation. We report the
performance on H and L separately in Tab. 3.

Comparing correlation values for H and L in
Tab. 3, we observe that when the models are mak-
ing correct and confident predictions (H), the val-
ues of correlation tend to be higher. In contrast,
when the model fails to detect the correct relation
(L), we see substantially lower correlation scores.

By replacing entity mentions with their FGET
in both CNNs+ATT and DirectSup (+F), we ob-
serve substantially increased correlation scores for
correct predictions (H). The improvement is con-
sistent across all methods that are used to compute
the importance scores.

Recall that Tab. 2 shows that concatenating
FGET with entity mention (+FE) yields im-
proved relation extraction performance for both
CNNs+ATT and DirectSup. In contrast, the ex-
planation results presented here show that this
comes at the cost of explainability, as demonstrated

by the substantially lower correlation scores of
CNNs+ATT+FE and DirectSup+FE. This confirms
our conjecture that removing entity mentions from
the sentence representation leads to more explain-
able models, possibly by forcing the model to focus
on the textual evidence contained in the sentence
rather than the word embedding of the mentions.

Finally, we note that adding LD further improves
the correlation score on H for S, GI and α. This
suggests that learning from distractors is a valuable
strategy that not only produces better relation ex-
traction performance, but also enhances the model
explanability.

7 Conclusion

In this work we provided an annotated test set with
ground-truth sentence-level explanations to eval-
uate the explanation quality of relation extraction
models with distant supervision. Our examination
of two baselines show that a model with lower rela-
tion extraction accuracy could have higher expla-
nation quality. We proposed methods to improve
both the accuracy and explainability. Our proposed
methods are based on changing the representation
of the sentences and learning from distractor to
teach the model to ignore irrelevant information
in a bag. Our evaluation on the widely used FB-
NYT dataset show the effectiveness of our method
in achieving state-of-the art performance in both
accuracy and explanation quality.

References
Aishwarya Agrawal, Dhruv Batra, and Devi Parikh.

2016. Analyzing the behavior of visual question an-
swering models. EMNLP.

Gabor Angeli, Julie Tibshirani, Jean Wu, and Christo-
pher D Manning. 2014. Combining distant and par-
tial supervision for relation extraction. EMNLP.

https://arxiv.org/pdf/1606.07356.pdf
https://arxiv.org/pdf/1606.07356.pdf
https://www.aclweb.org/anthology/D14-1164.pdf
https://www.aclweb.org/anthology/D14-1164.pdf


6493

Fan Bai and Alan Ritter. 2019. Structured minimally
supervised learning for neural relation extraction.
NAACL.

Yujia Bao, Shiyu Chang, Mo Yu, and Regina Barzilay.
2018. Deriving machine attention from human ratio-
nales. EMNLP.

Iz Beltagy, Kyle Lo, and Waleed Ammar. 2019. Com-
bining distant and direct supervision for neural rela-
tion extraction. NAACL.

Jinhua Du, Jingguang Han, Andy Way, and Dadong
Wan. 2018. Multi-level structured self-attentions for
distantly supervised relation extraction. EMNLP.

Reza Ghaeini, Xiaoli Z. Fern, Hamed Shahbazi, and
Prasad Tadepalli. 2019. Saliency learning: Teaching
the model where to pay attention. NAACL.

Reza Ghaeini, Xiaoli Z. Fern, and Prasad Tadepalli.
2018. Interpreting recurrent and attention-based
neural models: a case study on natural language in-
ference. EMNLP.

Suchin Gururangan, Swabha Swayamdipta, Omer
Levy, Roy Schwartz, Samuel R. Bowman, and
Noah A. Smith. 2018. Annotation artifacts in nat-
ural language inference data. NAACL.

Sarthak Jain, , and Byron C. Wallace. 2019. Attention
is not explanation. NAACL.

Guoliang Ji, Kang Liu, Shizhu He, and Jun Zhao.
2017. Distant supervision for relation extraction
with sentence-level attention and entity descriptions.
AAAI.

Tao Lei, Regina Barzilay, and Tommi Jaakkola. 2016.
Rationalizing neural predictions. EMNLP.

Yankai Lin, Shiqi Shen, Zhiyuan Liu, Huanbo Luan,
and Maosong Su. 2016. Neural relation extraction
with selective attention over instances. ACL.

Xiao Ling and Daniel S. Weld. 2012. Fine-grained en-
tity recognition. AAAI.

Tian Yu Liu, Kexiang Wang, Baobao Chang, and
Zhifang Sui. 2017. A soft-label method for
noise tolerant distantly supervised relation extrac-
tion. EMNLP.

Tianyi Liu, Xinsong Zhang, Wanhao Zhou, and Wei-
jia Jia. 2018. Neural relation extraction via in-
nersentence noise reduction and transfer learning.
EMNLP.

Bingfeng Luo, Yansong Feng, Zheng Wang, Zhanxing
Zhu, Songfang Huang, Rui Yan, and Dongyan Zhao.
2017. Learning with noise: Enhance distantly su-
pervised relation extraction with dynamic transition
matrix. ACL, arXiv:1503.06733.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg Cor-
rado, and Jeffrey Dean. 2013. Distributed represen-
tations of words and phrases and their composition-
ality. NeurIPS.

Xu Peng and Barbosa Denilson. 2019. Connecting lan-
guage and knowledge with heterogeneous represen-
tations for neural relation extraction. NAACL.

Maria Pershina, Bonan Min, Wei Xu, and Ralph Gr-
ishman. 2014. Infusion of labeled data into distant
supervision for relation extraction. ACL.

Sebastian Riedel, Limin Yao, , and Andrew D McCal-
lum. 2010. Modeling relations and their mentions
without labeled text. ECML/PKDD.

Andrew Slavin Ross, Michael C. Hughes, and Finale.
2017. Right for the right reasons: Training differ-
entiable models by constraining their explanations.
IJCAI.

Ramprasaath R. Selvaraju, Michael Cogswell, Ab-
hishek Das, Ramakrishna Vedantam, Devi Parikh,
and Dhruv Batra. 2019. Grad-cam: Visual explana-
tions from deep networks via gradient-based local-
ization. International Journal of Computer Vision.

Avanti Shrikumar, Peyton Greenside, Anna Shcherbina,
and Anshul Kundaje. 2016. Not just a black box:
Learning important features through propagating ac-
tivation differences.

Karen Simonyan, Andrea Vedaldi, and Andrew Zisser-
man. 2012. Deep inside convolutional networks: Vi-
sualising image classification models and saliency
maps. CoRR, abs/1312.6034.

Shikhar Vashishth, Rishabh Joshi, Sai Suman Prayaga,
Chiranjib Bhattacharyya, and Partha Talukdar. 2018.
Reside: Improving distantly-supervised neural rela-
tion extraction using side information. EMNLP.

Guanying Wang, Wen Zhang, Ruoxu Wang, Yalin
Zhou, Xi Chen, Wei Zhang, Hai Zhu, and Huajun
Chen. 2018. Label-free distant supervision for re-
lation extraction via knowledge graph embedding.
EMNLP.

Sarah Wiegreffe and Yuval Pinter. 2019. Attention is
not not explanation. NAACL.

Daojian Zeng, Joel R. Tetreault, Kang Liu, Yubo Chen,
and Jun Zhao. 2015. Distant supervision for rela-
tion extraction via piecewise convolutional neural
networks. EMNLP.

Zhengyan Zhang, Xu Han, Zhiyuan Liu, Xin Jiang,
Maosong Sun, and Qun Liu. 2019. Ernie: En-
hanced language representation with informative en-
tities. ACL.

https://arxiv.org/pdf/1904.00118.pdf
https://arxiv.org/pdf/1904.00118.pdf
https://arxiv.org/pdf/1808.09367.pdf
https://arxiv.org/pdf/1808.09367.pdf
https://arxiv.org/pdf/1810.12956.pdf
https://arxiv.org/pdf/1810.12956.pdf
https://arxiv.org/pdf/1810.12956.pdf
https://www.aclweb.org/anthology/D18-1245.pdf
https://www.aclweb.org/anthology/D18-1245.pdf
https://arxiv.org/pdf/1902.08649.pdf
https://arxiv.org/pdf/1902.08649.pdf
https://arxiv.org/pdf/1808.03894.pdf
https://arxiv.org/pdf/1808.03894.pdf
https://arxiv.org/pdf/1808.03894.pdf
https://www.aclweb.org/anthology/N18-2017.pdf
https://www.aclweb.org/anthology/N18-2017.pdf
https://arxiv.org/pdf/1902.10186.pdf
https://arxiv.org/pdf/1902.10186.pdf
https://aaai.org/ocs/index.php/AAAI/AAAI17/paper/download/14491/14078
https://aaai.org/ocs/index.php/AAAI/AAAI17/paper/download/14491/14078
https://www.aclweb.org/anthology/D16-1011.pdf
https://www.aclweb.org/anthology/P16-1200v2.pdf
https://www.aclweb.org/anthology/P16-1200v2.pdf
http://aiweb.cs.washington.edu/ai/pubs/ling-aaai12.pdf
http://aiweb.cs.washington.edu/ai/pubs/ling-aaai12.pdf
https://www.aclweb.org/anthology/D17-1189.pdf
https://www.aclweb.org/anthology/D17-1189.pdf
https://www.aclweb.org/anthology/D17-1189.pdf
https://www.aclweb.org/anthology/D18-1243.pdf
https://www.aclweb.org/anthology/D18-1243.pdf
https://arxiv.org/pdf/1705.03995.pdf
https://arxiv.org/pdf/1705.03995.pdf
https://arxiv.org/pdf/1705.03995.pdf
https://papers.nips.cc/paper/5021-distributed-representations-of-words-and-phrases-and-their-compositionality.pdf
https://papers.nips.cc/paper/5021-distributed-representations-of-words-and-phrases-and-their-compositionality.pdf
https://papers.nips.cc/paper/5021-distributed-representations-of-words-and-phrases-and-their-compositionality.pdf
https://www.aclweb.org/anthology/N19-1323.pdf
https://www.aclweb.org/anthology/N19-1323.pdf
https://www.aclweb.org/anthology/N19-1323.pdf
https://www.aclweb.org/anthology/P14-2119.pdf
https://www.aclweb.org/anthology/P14-2119.pdf
https://link.springer.com/chapter/10.1007/978-3-642-15939-8_10
https://link.springer.com/chapter/10.1007/978-3-642-15939-8_10
https://arxiv.org/abs/1703.03717
https://arxiv.org/abs/1703.03717
https://doi.org/10.1007/s11263-019-01228-7
https://doi.org/10.1007/s11263-019-01228-7
https://doi.org/10.1007/s11263-019-01228-7
http://arxiv.org/abs/1605.01713
http://arxiv.org/abs/1605.01713
http://arxiv.org/abs/1605.01713
https://arxiv.org/pdf/1312.6034.pdf
https://arxiv.org/pdf/1312.6034.pdf
https://arxiv.org/pdf/1312.6034.pdf
https://www.aclweb.org/anthology/D18-1157.pdf
https://www.aclweb.org/anthology/D18-1157.pdf
https://www.aclweb.org/anthology/D18-1248.pdf
https://www.aclweb.org/anthology/D18-1248.pdf
https://arxiv.org/pdf/1908.04626.pdf
https://arxiv.org/pdf/1908.04626.pdf
http://www.emnlp2015.org/proceedings/EMNLP/pdf/EMNLP203.pdf
http://www.emnlp2015.org/proceedings/EMNLP/pdf/EMNLP203.pdf
http://www.emnlp2015.org/proceedings/EMNLP/pdf/EMNLP203.pdf
https://www.aclweb.org/anthology/P19-1139.pdf
https://www.aclweb.org/anthology/P19-1139.pdf
https://www.aclweb.org/anthology/P19-1139.pdf


6494

A Supplemental Material

A.1 Saliency and (Gradient × input)
Assume that a neural model outputs a logit score
o which is a differentiable function and parameter-
ized by x ∈ Rd, θ and etc. The Taylor series of the
given function o near input a is given by:

o(x) = o(a)+
∂o

∂x
(a)(x−a)+

1

2!

∂o2

∂x2
(a)(x−a)2+. . .

(9)
Approximating the function o as a linear function,
the first order approximation of the Taylor series is
given by:

o(x) ≈ ∂o

∂x
(a)x+ b (10)

Note that ∂o
∂x(a) ∈ Rd. Therefore for each dimen-

sion i the bigger ∂o
∂x(a)[i] , the more (positive or

negative) the impact of a[i] is on o. The whole
impact of a on o is given by

∑
i
∂o
∂x(a)[i] of its

absolute value
∑

i |
∂o
∂x(a)[i]|.

Regarding our task, the logit score of the model
for a relation k is ok. For a given sentence xn,
the amount of positive or negative impact of xn
on ok is approximated by

∑
i |

∂ok
∂x (xn)[i]| which is

saliency.
The (Gradient × input) for a given sentence xn is
equivalent to the linear approximation of ok at xn
which is

∑
i xn[i]× ∂ok

∂x (xn)[i].

A.2 Ground-truth explanation set.
We annotate the positive bags of the test split of
FB-NYT with ground-truth explanations. There
are 1950 bags and 6444 sentences. For each pair
of (sentence, relation) in a bag, the sentence is
either a rationale (supportive) to the relation or it is
irrelevant. For example:

entity pair: ( namibia , windhoek )
relation: /location/country/capital

rationale : “‘the magistrate also continued mr. alexander ’s bail condi-
tions , including a bond of 10 million namibian dollars about 1.4 million
and restrictions on his movements to the magisterial district of windhoek

, namibia ’s capital“‘

irrelevant : “‘mr. alexander also placed full page ads in local newspapers

proclaiming his commitment to investing in namibia , and has mounted
a large billboard conveying the same message opposite government park
in windhoek “‘

Following the annotation of the sentence-relation
contributions which is either rationale or irrelevant,
we extract a set “expl-eval” (which is going to be
used to evaluate the explanation quality of the mod-
els) as follows:

expl−e v a l = s e t ( )
For each ( bag−id , bag ) :

For each r e l a t i o n l a b e l k g i v e n t o t h e bag :
For each p a i r o f r a t i o n a l e s+ an i r r e l e v a n t s−

f o r k :
exp l−e v a l . add ( ( bag−id , k , s+ , s− ) )

The size of the generated expl-eval is 1097 tu-
ples of (bag-id, k, rationale sentence, irrelevant
sentence). Please note that the relation label k is
one of the ground-truth labels assigned to bag-id.


