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Abstract

State-of-the-art unsupervised multilingual
models (e.g., multilingual BERT) have been
shown to generalize in a zero-shot cross-
lingual setting. This generalization ability has
been attributed to the use of a shared subword
vocabulary and joint training across multiple
languages giving rise to deep multilingual
abstractions. We evaluate this hypothesis by
designing an alternative approach that trans-
fers a monolingual model to new languages
at the lexical level. More concretely, we first
train a transformer-based masked language
model on one language, and transfer it to a
new language by learning a new embedding
matrix with the same masked language
modeling objective—freezing parameters
of all other layers. This approach does not
rely on a shared vocabulary or joint training.
However, we show that it is competitive with
multilingual BERT on standard cross-lingual
classification benchmarks and on a new
Cross-lingual Question Answering Dataset
(XQuAD). Our results contradict common
beliefs of the basis of the generalization ability
of multilingual models and suggest that deep
monolingual models learn some abstractions
that generalize across languages. We also
release XQuAD as a more comprehensive
cross-lingual benchmark, which comprises
240 paragraphs and 1190 question-answer
pairs from SQuAD v1.1 translated into ten
languages by professional translators.

1 Introduction

Multilingual pre-training methods such as multi-
lingual BERT (mBERT, Devlin et al., 2019) have
been successfully used for zero-shot cross-lingual
transfer (Pires et al., 2019; Conneau and Lample,
2019). These methods work by jointly training a

∗Work done as an intern at DeepMind.

transformer model (Vaswani et al., 2017) to per-
form masked language modeling (MLM) in multi-
ple languages, which is then fine-tuned on a down-
stream task using labeled data in a single language—
typically English. As a result of the multilingual
pre-training, the model is able to generalize to other
languages, even if it has never seen labeled data
in those languages. Such a cross-lingual general-
ization ability is surprising, as there is no explicit
cross-lingual term in the underlying training objec-
tive. In relation to this, Pires et al. (2019) hypothe-
sized that:

. . . having word pieces used in all languages (num-
bers, URLs, etc), which have to be mapped to a
shared space forces the co-occurring pieces to also
be mapped to a shared space, thus spreading the ef-
fect to other word pieces, until different languages
are close to a shared space.
. . . mBERT’s ability to generalize cannot be at-
tributed solely to vocabulary memorization, and
that it must be learning a deeper multilingual rep-
resentation.

Cao et al. (2020) echoed this sentiment, and Wu
and Dredze (2019) further observed that mBERT
performs better in languages that share many sub-
words. As such, the current consensus of the cross-
lingual generalization ability of mBERT is based
on a combination of three factors: (i) shared vocab-
ulary items that act as anchor points; (ii) joint train-
ing across multiple languages that spreads this ef-
fect; which ultimately yields (iii) deep cross-lingual
representations that generalize across languages
and tasks.

In this paper, we empirically test this hypothesis
by designing an alternative approach that violates
all of these assumptions. As illustrated in Figure 1,
our method starts with a monolingual transformer
trained with MLM, which we transfer to a new lan-
guage by learning a new embedding matrix through
MLM in the new language while freezing parame-
ters of all other layers. This approach only learns
new lexical parameters and does not rely on shared
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(d) Zero-shot transfer to L2

Figure 1: Four steps for zero-shot cross-lingual transfer: (i) pre-train a monolingual transformer model in English
akin to BERT; (ii) freeze the transformer body and learn new token embeddings from scratch for a second language
using the same training objective over its monolingual corpus; (iii) fine-tune the model on English while keeping
the embeddings frozen; and (iv) zero-shot transfer it to the new language by swapping the token embeddings.

vocabulary items nor joint learning. However, we
show that it is competitive with joint multilingual
pre-training across standard zero-shot cross-lingual
transfer benchmarks (XNLI, MLDoc, and PAWS-
X).

We also experiment with a new Cross-lingual
Question Answering Dataset (XQuAD), which con-
sists of 240 paragraphs and 1190 question-answer
pairs from SQuAD v1.1 (Rajpurkar et al., 2016)
translated into ten languages by professional trans-
lators. Question answering as a task is a clas-
sic probe for language understanding. It has also
been found to be less susceptible to annotation
artifacts commonly found in other benchmarks
(Kaushik and Lipton, 2018; Gururangan et al.,
2018). We believe that XQuAD can serve as
a more comprehensive cross-lingual benchmark
and make it publicly available at https://github.
com/deepmind/xquad. Our results on XQuAD
show that the monolingual transfer approach can
be made competitive with mBERT by learning sec-
ond language-specific transformations via adapter
modules (Rebuffi et al., 2017).

Our contributions in this paper are as follows: (i)
we propose a method to transfer monolingual rep-
resentations to new languages in an unsupervised
fashion (§2)1; (ii) we show that neither a shared
subword vocabulary nor joint multilingual training
is necessary for zero-shot transfer and find that the
effective vocabulary size per language is an impor-
tant factor for learning multilingual models (§3 and
§4); (iii) we show that monolingual models learn
abstractions that generalize across languages (§5);
and (iv) we present a new cross-lingual question
answering dataset (§4).

1This is particularly useful for low-resource languages,
since many pre-trained models are currently in English.

2 Cross-lingual Transfer of Monolingual
Representations

In this section, we propose an approach to transfer a
pre-trained monolingual model in one language L1

(for which both task supervision and a monolingual
corpus are available) to a second language L2 (for
which only a monolingual corpus is available). The
method serves as a counterpoint to existing joint
multilingual models, as it works by aligning new
lexical parameters to a monolingually trained deep
model.

As illustrated in Figure 1, our proposed method
consists of four steps:

1. Pre-train a monolingual BERT (i.e. a trans-
former) in L1 with masked language modeling
(MLM) and next sentence prediction (NSP)
objectives on an unlabeled L1 corpus.

2. Transfer the model to a new language by learn-
ing new token embeddings while freezing the
transformer body with the same training ob-
jectives (MLM and NSP) on an unlabeled L2

corpus.

3. Fine-tune the transformer for a downstream
task using labeled data in L1, while keeping
the L1 token embeddings frozen.

4. Zero-shot transfer the resulting model to L2

by swapping the L1 token embeddings with
the L2 embeddings learned in Step 2.

We note that, unlike mBERT, we use a sepa-
rate subword vocabulary for each language, which
is trained on its respective monolingual corpus,
so the model has no notion of shared subwords.
However, the special [CLS], [SEP], [MASK],

https://github.com/deepmind/xquad
https://github.com/deepmind/xquad
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[PAD], and [UNK] symbols are shared across lan-
guages, and fine-tuned in Step 3.2 We observe fur-
ther improvements on several downstream tasks us-
ing the following extensions to the above method.

Language-specific position embeddings. The
basic approach does not take into account differ-
ent word orders commonly found in different lan-
guages, as it reuses the position embeddings in L1

for L2. We relax this restriction by learning a sep-
arate set of position embeddings for L2 in Step 2
(along with L2 token embeddings).3 We treat the
[CLS] symbol as a special case. In the original
implementation, BERT treats [CLS] as a regular
word with its own position and segment embed-
dings, even if it always appears in the first position.
However, this does not provide any extra capacity
to the model, as the same position and segment
embeddings are always added up to the [CLS]
embedding. Following this observation, we do not
use any position and segment embeddings for the
[CLS] symbol.

Noised fine-tuning. The transformer body in our
proposed method is only trained with L1 embed-
dings as its input layer, but is used with L2 embed-
dings at test time. To make the model more robust
to this mismatch, we add Gaussian noises sampled
from the standard normal distribution to the word,
position, and segment embeddings during the fine-
tuning step (Step 3).

Adapters. We also investigate the possibility of
allowing the model to learn better deep represen-
tations of L2, while retaining the alignment with
L1 using residual adapters (Rebuffi et al., 2017).
Adapters are small task-specific bottleneck lay-
ers that are added between layers of a pre-trained
model. During fine-tuning, the original model pa-
rameters are frozen, and only parameters of the
adapter modules are learned. In Step 2, when we
transfer the L1 transformer to L2, we add a feed-
forward adapter module after the projection follow-
ing multi-headed attention and after the two feed-
forward layers in each transformer layer, similar to
Houlsby et al. (2019). Note that the original trans-
former body is still frozen, and only parameters of

2The rationale behind this is that special symbols are gen-
erally task dependent, and given that the fine-tuning in down-
stream tasks is done exclusively in English, we need to share
these symbols to zero-shot transfer to other languages.

3We also freeze the L1 position embeddings in Step 3
accordingly, and the L2 position embeddings are plugged in
together with the token embeddings in Step 4.

the adapter modules are trainable (in addition to
the embedding matrix in L2).

3 Experiments

Our goal is to evaluate the performance of different
multilingual models in the zero-shot cross-lingual
setting to better understand the source of their gen-
eralization ability. We describe the models that we
compare (§3.1), the experimental setting (§3.2), and
the results on three classification datasets: XNLI
(§3.3), MLDoc (§3.4) and PAWS-X (§3.5). We dis-
cuss experiments on our new XQuAD dataset in
§4. In all experiments, we fine-tune a pre-trained
model using labeled training examples in English,
and evaluate on test examples in other languages
via zero-shot transfer.

3.1 Models

We compare four main models in our experiments:

Joint multilingual models (JOINTMULTI). A
multilingual BERT model trained jointly on 15
languages4. This model is analogous to mBERT
and closely related to other variants like XLM.

Joint pairwise bilingual models (JOINTPAIR). A
multilingual BERT model trained jointly on two
languages (English and another language). This
serves to control the effect of having multiple lan-
guages in joint training. At the same time, it pro-
vides a joint system that is directly comparable to
the monolingual transfer approach in §2, which
also operates on two languages.

Cross-lingual word embedding mappings
(CLWE). The method we described in §2
operates at the lexical level, and can be seen as a
form of learning cross-lingual word embeddings
that are aligned to a monolingual transformer body.
In contrast to this approach, standard cross-lingual
word embedding mappings first align monolingual
lexical spaces and then learn a multilingual deep
model on top of this space. We also include a
method based on this alternative approach where
we train skip-gram embeddings for each language,
and map them to a shared space using VecMap
(Artetxe et al., 2018).5 We then train an English
BERT model using MLM and NSP on top of
the frozen mapped embeddings. The model is

4We use all languages that are included in XNLI (Conneau
et al., 2018b).

5We use the orthogonal mode in VecMap and map all
languages into English.
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then fine-tuned using English labeled data while
keeping the embeddings frozen. We zero-shot
transfer to a new language by plugging in its
respective mapped embeddings.

Cross-lingual transfer of monolingual models
(MONOTRANS). Our method described in §2. We
use English as L1 and try multiple variants with
different extensions.

3.2 Setting
Vocabulary. We perform subword tokenization
using the unigram model in SentencePiece (Kudo
and Richardson, 2018). In order to understand the
effect of sharing subwords across languages and
the size of the vocabulary, we train each model with
various settings. We train 4 different JOINTMULTI

models with a vocabulary of 32k, 64k, 100k, and
200k subwords. For JOINTPAIR, we train one model
with a joint vocabulary of 32k subwords, learned
separately for each language pair, and another one
with a disjoint vocabulary of 32k subwords per
language, learned on its respective monolingual
corpus. The latter is directly comparable to MONO-

TRANS in terms of vocabulary, in that it is restricted
to two languages and uses the exact same disjoint
vocabulary with 32k subwords per language. For
CLWE, we use the same subword vocabulary and
investigate two choices: (i) the number of embed-
ding dimensions—300d (the standard in the cross-
lingual embedding literature) and 768d (equivalent
to the rest of the models); and (ii) the self-learning
initialization—weakly supervised (based on iden-
tically spelled words, Søgaard et al., 2018) and
unsupervised (based on the intralingual similarity
distribution, Artetxe et al., 2018).

Pre-training data. We use Wikipedia as our
training corpus, similar to mBERT and XLM (Con-
neau and Lample, 2019), which we extract using
the WikiExtractor tool.6 We do not perform any
lowercasing or normalization. When working with
languages of different corpus sizes, we use the
same upsampling strategy as Conneau and Lample
(2019) for both the subword vocabulary learning
and the pre-training.

Training details. Our implementation is based
on the BERT code from Devlin et al. (2019).
For adapters, we build on the code by Houlsby
et al. (2019). We use the model architecture of

6https://github.com/attardi/
wikiextractor

BERTBASE, similar to mBERT. We use the LAMB
optimizer (You et al., 2020) and train on 64 TPUv3
chips for 250,000 steps using the same hyperpa-
rameters as You et al. (2020). We describe other
training details in Appendix A. Our hyperparameter
configuration is based on preliminary experiments
on the development set of the XNLI dataset. We do
not perform any exhaustive hyperparameter search,
and use the exact same settings for all model vari-
ants, languages, and tasks.

Evaluation setting. We perform a single train-
ing and evaluation run for each model, and report
results in the corresponding test set for each down-
stream task. For MONOTRANS, we observe stability
issues when learning language-specific position em-
beddings for Greek, Thai and Swahili. The second
step would occasionally fail to converge to a good
solution. For these three languages, we run Step 2
of our proposed method (§2) three times and pick
the best model on the XNLI development set.

3.3 XNLI: Natural Language Inference

In natural language inference (NLI), given two
sentences (a premise and a hypothesis), the goal
is to decide whether there is an entailment, con-
tradiction, or neutral relationship between them
(Bowman et al., 2015). We train all models on the
MultiNLI dataset (Williams et al., 2018) in English
and evaluate on XNLI (Conneau et al., 2018b)—a
cross-lingual NLI dataset consisting of 2,500 de-
velopment and 5,000 test instances translated from
English into 14 languages.

We report our results on XNLI in Table 1 to-
gether with the previous results from mBERT and
XLM.7 We summarize our main findings below.

JOINTMULTI is comparable with the literature.
Our best JOINTMULTI model is substantially better
than mBERT, and only one point worse (on aver-
age) than the unsupervised XLM model, which is
larger in size.

A larger vocabulary is beneficial. JOINTMULTI

variants with a larger vocabulary perform better.

More languages do not improve performance.
JOINTPAIR models with a joint vocabulary perform
comparably with JOINTMULTI.

7mBERT covers 102 languages and has a shared vocabu-
lary of 110k subwords. XLM covers 15 languages and uses a
larger model size with a shared vocabulary of 95k subwords,
which contributes to its better performance.

https://github.com/attardi/wikiextractor
https://github.com/attardi/wikiextractor
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en fr es de el bg ru tr ar vi th zh hi sw ur avg

Prev
work

mBERT 81.4 - 74.3 70.5 - - - - 62.1 - - 63.8 - - 58.3 -
XLM (MLM) 83.2 76.5 76.3 74.2 73.1 74.0 73.1 67.8 68.5 71.2 69.2 71.9 65.7 64.6 63.4 71.5

CLWE

300d ident 82.1 67.6 69.0 65.0 60.9 59.1 59.5 51.2 55.3 46.6 54.0 58.5 48.4 35.3 43.0 57.0
300d unsup 82.1 67.4 69.3 64.5 60.2 58.4 59.2 51.5 56.2 36.4 54.7 57.7 48.2 36.2 33.8 55.7
768d ident 82.4 70.7 71.1 67.6 64.2 61.4 63.3 55.0 58.6 50.7 58.0 60.2 54.8 34.8 48.1 60.1
768d unsup 82.4 70.4 71.2 67.4 63.9 62.8 63.3 54.8 58.3 49.1 57.2 55.7 54.9 35.0 33.9 58.7

JOINT
MULTI

32k voc 79.0 71.5 72.2 68.5 66.7 66.9 66.5 58.4 64.4 66.0 62.3 66.4 59.1 50.4 56.9 65.0
64k voc 80.7 72.8 73.0 69.8 69.6 69.5 68.8 63.6 66.1 67.2 64.7 66.7 63.2 52.0 59.0 67.1
100k voc 81.2 74.5 74.4 72.0 72.3 71.2 70.0 65.1 69.7 68.9 66.4 68.0 64.2 55.6 62.2 69.0
200k voc 82.2 75.8 75.7 73.4 74.0 73.1 71.8 67.3 69.8 69.8 67.7 67.8 65.8 60.9 62.3 70.5

JOINT
PAIR

Joint voc 82.2 74.8 76.4 73.1 72.0 71.8 70.2 67.9 68.5 71.4 67.7 70.8 64.5 64.2 60.6 70.4
Disjoint voc 83.0 76.2 77.1 74.4 74.4 73.7 72.1 68.8 71.3 70.9 66.2 72.5 66.0 62.3 58.0 71.1

MONO
TRANS

Token emb 83.1 73.3 73.9 71.0 70.3 71.5 66.7 64.5 66.6 68.2 63.9 66.9 61.3 58.1 57.3 67.8
+ pos emb 83.8 74.3 75.1 71.7 72.6 72.8 68.8 66.0 68.6 69.8 65.7 69.7 61.1 58.8 58.3 69.1
+ noising 81.7 74.1 75.2 72.6 72.9 73.1 70.2 68.1 70.2 69.1 67.7 70.6 62.5 62.5 60.2 70.0
+ adapters 81.7 74.7 75.4 73.0 72.0 73.7 70.4 69.9 70.6 69.5 65.1 70.3 65.2 59.6 51.7 69.5

Table 1: XNLI results (accuracy). mBERT results are taken from the official BERT repository, while XLM results
are taken from Conneau and Lample (2019). We bold the best result in each section and underline the overall best.

A shared subword vocabulary is not necessary
for joint multilingual pre-training. The equiv-
alent JOINTPAIR models with a disjoint vocabulary
for each language perform better.

CLWE performs poorly. Even if it is competi-
tive in English, it does not transfer as well to other
languages. Larger dimensionalities and weak su-
pervision improve CLWE, but its performance is
still below other models.

MONOTRANS is competitive with joint learning.
The basic version of MONOTRANS is 3.3 points
worse on average than its equivalent JOINTPAIR

model. Language-specific position embeddings
and noised fine-tuning reduce the gap to only 1.1
points. Adapters mostly improve performance,
except for low-resource languages such as Urdu,
Swahili, Thai, and Greek. In subsequent experi-
ments, we include results for all variants of MONO-

TRANS and JOINTPAIR, the best CLWE variant (768d
ident), and JOINTMULTI with 32k and 200k voc.

3.4 MLDoc: Document Classification

In MLDoc (Schwenk and Li, 2018), the task is
to classify documents into one of four different
genres: corporate/industrial, economics, govern-
ment/social, and markets. The dataset is an im-
proved version of the Reuters benchmark (Klemen-
tiev et al., 2012), and consists of 1,000 training and
4,000 test documents in 7 languages.

We show the results of our MLDoc experiments
in Table 2. In this task, we observe that simpler

models tend to perform better, and the best overall
results are from CLWE. We believe that this can be
attributed to: (i) the superficial nature of the task
itself, as a model can rely on a few keywords to
identify the genre of an input document without
requiring any high-level understanding and (ii) the
small size of the training set. Nonetheless, all of
the four model families obtain generally similar re-
sults, corroborating our previous findings that joint
multilingual pre-training and a shared vocabulary
are not needed to achieve good performance.

3.5 PAWS-X: Paraphrase Identification

PAWS is a dataset that contains pairs of sentences
with a high lexical overlap (Zhang et al., 2019).
The task is to predict whether each pair is a para-
phrase or not. While the original dataset is only
in English, PAWS-X (Yang et al., 2019) provides
human translations into six languages.

We evaluate our models on this dataset and show
our results in Table 2. Similar to experiments on
other datasets, MONOTRANS is competitive with the
best joint variant, with a difference of only 0.6
points when we learn language-specific position
embeddings.

4 XQuAD: Cross-lingual Question
Answering Dataset

Our classification experiments demonstrate that
MONOTRANS is competitive with JOINTMULTI and
JOINTPAIR, despite being multilingual at the embed-
ding layer only (i.e. the transformer body is trained
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MLDoc PAWS-X

en fr es de ru zh avg en fr es de zh avg

Prev work mBERT - 83.0 75.0 82.4 71.6 66.2 - 93.5 85.2 86.0 82.2 75.8 84.5

CLWE 768d ident 94.7 87.3 77.0 88.7 67.6 78.3 82.3 92.8 85.2 85.5 81.6 72.5 83.5

JOINT
MULTI

32k voc 92.6 81.7 75.8 85.4 71.5 66.6 78.9 91.9 83.8 83.3 82.6 75.8 83.5
200k voc 91.9 82.1 80.9 89.3 71.8 66.2 80.4 93.8 87.7 87.5 87.3 78.8 87.0

JOINT
PAIR

Joint voc 93.1 81.3 74.7 87.7 71.5 80.7 81.5 93.3 86.1 87.2 86.0 79.9 86.5
Disjoint voc 93.5 83.1 78.0 86.6 65.5 78.1 80.8 94.0 88.4 88.6 87.5 79.3 87.5

MONO
TRANS

Token emb 93.5 84.0 76.9 88.7 60.6 83.6 81.2 93.6 87.0 87.1 84.2 78.2 86.0
+ pos emb 93.6 79.7 75.7 86.6 61.6 83.0 80.0 94.3 87.3 87.6 86.3 79.0 86.9
+ noising 88.2 81.3 72.2 89.4 63.9 65.1 76.7 88.0 83.3 83.2 81.8 77.5 82.7
+ adapters 88.2 81.4 76.4 89.6 63.1 77.3 79.3 88.0 84.1 83.0 81.5 73.5 82.0

Table 2: MLDoc and PAWS-X results (accuracy). mBERT results are from Eisenschlos et al. (2019) for MLDoc
and from Yang et al. (2019) for PAWS-X, respectively. We bold the best result in each section with more than two
models and underline the overall best result.

exclusively on English). One possible explana-
tion for this behaviour is that existing cross-lingual
benchmarks are flawed and solvable at the lexical
level. For example, previous work has shown that
models trained on MultiNLI—from which XNLI
was derived—learn to exploit superficial cues in
the data (Gururangan et al., 2018).

To better understand the cross-lingual generaliza-
tion ability of these models, we create a new Cross-
lingual Question Answering Dataset (XQuAD).
Question answering is a classic probe for natural
language understanding (Hermann et al., 2015) and
has been shown to be less susceptible to annota-
tion artifacts than other popular tasks (Kaushik and
Lipton, 2018). In contrast to existing classifica-
tion benchmarks, extractive question answering re-
quires identifying relevant answer spans in longer
context paragraphs, thus requiring some degree of
structural transfer across languages.

XQuAD consists of a subset of 240 paragraphs
and 1190 question-answer pairs from the devel-
opment set of SQuAD v1.18 together with their
translations into ten languages: Spanish, German,
Greek, Russian, Turkish, Arabic, Vietnamese, Thai,
Chinese, and Hindi. Both the context paragraphs
and the questions are translated by professional
human translators from Gengo9. In order to facili-
tate easy annotations of answer spans, we choose
the most frequent answer for each question and
mark its beginning and end in the context para-
graph using special symbols, instructing translators
to keep these symbols in the relevant positions in

8We choose SQuAD 1.1 to avoid translating unanswerable
questions.

9https://gengo.com

their translations. Appendix B discusses the dataset
in more details.

We show F1 scores on XQuAD in Table 3 (we
include exact match scores in Appendix C). Sim-
ilar to our findings in the XNLI experiment, the
vocabulary size has a large impact on JOINTMULTI,
and JOINTPAIR models with disjoint vocabularies
perform the best. The gap between MONOTRANS

and joint models is larger, but MONOTRANS still per-
forms surprisingly well given the nature of the task.
We observe that learning language-specific posi-
tion embeddings is helpful in most cases, but com-
pletely fails for Turkish and Hindi. Interestingly,
the exact same pre-trained models (after Steps 1
and 2) do obtain competitive results in XNLI (§3.3).
In contrast to results on previous tasks, adding
adapters to allow a transferred monolingual model
to learn higher level abstractions in the new lan-
guage significantly improves performance, result-
ing in a MONOTRANS model that is comparable to
the best joint system.

5 Discussion

Joint multilingual training. We demonstrate
that sharing subwords across languages is not nec-
essary for mBERT to work, contrary to a previous
hypothesis by Pires et al. (2019). We also do not
observe clear improvements by scaling the joint
training to a large number of languages.

Rather than having a joint vs. disjoint vocabu-
lary or two vs. multiple languages, we find that an
important factor is the effective vocabulary size per
language. When using a joint vocabulary, only a
subset of the tokens is effectively shared, while the

https://gengo.com
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en es de el ru tr ar vi th zh hi avg

mBERT 88.9 75.5 70.6 62.6 71.3 55.4 61.5 69.5 42.7 58.0 59.2 65.0

CLWE 768d ident 84.2 58.0 51.2 41.1 48.3 24.2 32.8 29.7 23.8 19.9 21.7 39.5

JOINT
MULTI

32k voc 79.3 59.5 60.3 49.6 59.7 42.9 52.3 53.6 49.3 50.2 42.3 54.5
200k voc 82.7 74.3 71.3 67.1 70.2 56.6 64.8 67.6 58.6 51.5 58.3 65.7

JOINT
PAIR

Joint voc 82.8 68.3 73.6 58.8 69.8 53.8 65.3 69.5 56.3 58.8 57.4 64.9
Disjoint voc 83.3 72.5 72.8 67.3 71.7 60.5 66.5 68.9 56.1 60.4 56.7 67.0

MONO
TRANS

Token emb 83.9 67.9 62.1 63.0 64.2 51.2 61.0 64.1 52.6 51.4 50.9 61.1
+ pos emb 84.7 73.1 65.9 66.5 66.2 16.2 59.5 65.8 51.5 56.4 19.3 56.8
+ noising 82.1 68.4 68.2 67.3 67.5 17.5 61.2 65.9 57.5 58.5 21.5 57.8
+ adapters 82.1 70.8 70.6 67.9 69.1 61.3 66.0 67.0 57.5 60.5 61.9 66.8

Table 3: XQuAD results (F1). We bold the best result in each section and underline the overall best result.

mono xx→en aligned

en en fr es de el bg ru tr ar vi zh avg

Semantic WiC 59.1 58.2 62.5 59.6 58.0 59.9 56.9 57.7 58.5 59.7 57.8 56.7 58.7
SCWS 45.9 44.3 39.7 34.1 39.1 38.2 28.9 32.6 42.1 45.5 35.3 31.8 37.4

Syntactic Subject-verb agreement 86.5 58.2 64.0 65.7 57.6 67.6 58.4 73.6 59.6 61.2 62.1 61.1 62.7
Reflexive anaphora 79.2 60.2 60.7 66.6 53.3 63.6 56.0 75.4 69.4 81.6 58.4 55.2 63.7

Table 4: Semantic and syntactic probing results of a monolingual model and monolingual models transferred to
English. Results are on the Word-in-Context (WiC) dev set, the Stanford Contextual Word Similarity (SCWS) test
set, and the syntactic evaluation (syn) test set (Marvin and Linzen, 2018). Metrics are accuracy (WiC), Spearman’s
r (SCWS), and macro-averaged accuracy (syn).

rest tends to occur in only one language. As a result,
multiple languages compete for allocations in the
shared vocabulary. We observe that multilingual
models with larger vocabulary sizes obtain consis-
tently better results. It is also interesting that our
best results are generally obtained by the JOINTPAIR

systems with a disjoint vocabulary, which guaran-
tees that each language is allocated 32k subwords.
As such, we believe that future work should treat
the effective vocabulary size as an important factor.

Transfer of monolingual representations.
MONOTRANS is competitive even in the most
challenging scenarios. This indicates that joint
multilingual pre-training is not essential for
cross-lingual generalization, suggesting that
monolingual models learn linguistic abstractions
that generalize across languages.

To get a better understanding of this phe-
nomenon, we probe the representations of MONO-

TRANS. As existing probing datasets are only avail-
able in English, we train monolingual representa-
tions in non-English languages and transfer them to
English. We probe representations from the result-
ing English models with the Word in Context (WiC;
Pilehvar and Camacho-Collados, 2019), Stanford

Contextual Word Similarity (SCWS; Huang et al.,
2012), and the syntactic evaluation (Marvin and
Linzen, 2018) datasets.

We provide details of our experimental setup in
Appendix D and show a summary of our results
in Table 4. The results indicate that monolingual
semantic representations learned from non-English
languages transfer to English to a degree. On WiC,
models transferred from non-English languages are
comparable with models trained on English. On
SCWS, while there are more variations, models
trained on other languages still perform surpris-
ingly well. In contrast, we observe larger gaps in
the syntactic evaluation dataset. This suggests that
transferring syntactic abstractions is more challeng-
ing than semantic abstractions. We leave a more
thorough investigation of whether joint multilin-
gual pre-training reduces to learning a lexical-level
alignment for future work.

CLWE. CLWE models—although similar in spirit
to MONOTRANS—are only competitive on the easiest
and smallest task (MLDoc), and perform poorly on
the more challenging ones (XNLI and XQuAD).
While previous work has questioned evaluation
methods in this research area (Glavaš et al., 2019;
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Artetxe et al., 2019), our results provide evidence
that existing methods are not competitive in chal-
lenging downstream tasks and that mapping be-
tween two fixed embedding spaces may be overly
restrictive. For that reason, we think that designing
better integration techniques of CLWE to down-
stream models is an important future direction.

Lifelong learning. Humans learn continuously
and accumulate knowledge throughout their life-
time. In contrast, existing multilingual models fo-
cus on the scenario where all training data for all
languages is available in advance. The setting to
transfer a monolingual model to other languages is
suitable for the scenario where one needs to incor-
porate new languages into an existing model, while
no longer having access to the original data. Such
a scenario is of significant practical interest, since
models are often released without the data they are
trained on. In that regard, our work provides a
baseline for multilingual lifelong learning.

6 Related Work

Unsupervised lexical multilingual representa-
tions. A common approach to learn multilingual
representations is based on cross-lingual word em-
bedding mappings. These methods learn a set of
monolingual word embeddings for each language
and map them to a shared space through a linear
transformation. Recent approaches perform this
mapping with an unsupervised initialization based
on heuristics (Artetxe et al., 2018) or adversarial
training (Zhang et al., 2017; Conneau et al., 2018a),
which is further improved through self-learning
(Artetxe et al., 2017). The same approach has also
been adapted for contextual representations (Schus-
ter et al., 2019).

Unsupervised deep multilingual representa-
tions. In contrast to the previous approach, which
learns a shared multilingual space at the lexical
level, state-of-the-art methods learn deep represen-
tations with a transformer. Most of these methods
are based on mBERT. Extensions to mBERT in-
clude scaling it up and incorporating parallel data
(Conneau and Lample, 2019), adding auxiliary pre-
training tasks (Huang et al., 2019), and encouraging
representations of translations to be similar (Cao
et al., 2020).

Concurrent to this work, Tran (2020) propose a
more complex approach to transfer a monolingual
BERT to other languages that achieves results simi-

lar to ours. However, they find that post-hoc embed-
ding learning from a random initialization does not
work well. In contrast, we show that monolingual
representations generalize well to other languages
and that we can transfer to a new language by learn-
ing new subword embeddings. Contemporaneous
work also shows that a shared vocabulary is not
important for learning multilingual representations
(K et al., 2020; Wu et al., 2019), while Lewis et al.
(2019) propose a question answering dataset that is
similar in spirit to ours but covers fewer languages
and is not parallel across all of them.

7 Conclusions

We compared state-of-the-art multilingual represen-
tation learning models and a monolingual model
that is transferred to new languages at the lex-
ical level. We demonstrated that these models
perform comparably on standard zero-shot cross-
lingual transfer benchmarks, indicating that neither
a shared vocabulary nor joint pre-training are nec-
essary in multilingual models. We also showed
that a monolingual model trained on a particular
language learns some semantic abstractions that
are generalizable to other languages in a series of
probing experiments. Our results and analysis con-
tradict previous theories and provide new insights
into the basis of the generalization abilities of multi-
lingual models. To provide a more comprehensive
benchmark to evaluate cross-lingual models, we
also released the Cross-lingual Question Answer-
ing Dataset (XQuAD).
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A Training details

In contrast to You et al. (2020), we train with a
sequence length of 512 from the beginning, in-
stead of dividing training into two stages. For our
proposed approach, we pre-train a single English
model for 250k steps, and perform another 250k
steps to transfer it to every other language.

For the fine-tuning, we use Adam with a learn-
ing rate of 2e-5, a batch size of 32, and train for
2 epochs. The rest of the hyperparameters follow
Devlin et al. (2019). For adapters, we follow the hy-
perparameters employed by Houlsby et al. (2019).
For our proposed model using noised fine-tuning,
we set the standard deviation of the Gaussian noise
to 0.075 and the mean to 0.

B XQuAD dataset details

XQuAD consists of a subset of 240 context para-
graphs and 1190 question-answer pairs from the
development set of SQuAD v1.1 (Rajpurkar et al.,
2016) together with their translations into 10 other
languages: Spanish, German, Greek, Russian,
Turkish, Arabic, Vietnamese, Thai, Chinese, and
Hindi. Table 5 comprises some statistics of the
dataset, while Table 6 shows one example from it.

So as to guarantee the diversity of the dataset,
we selected 5 context paragraphs at random from
each of the 48 documents in the SQuAD 1.1 de-
velopment set, and translate both the context para-
graphs themselves as well as all their corresponding
questions. The translations were done by profes-
sional human translators through the Gengo10 ser-
vice. The translation workload was divided into 10
batches for each language, which were submitted
separately to Gengo. As a consequence, differ-
ent parts of the dataset might have been translated
by different translators. However, we did guar-
antee that all paragraphs and questions from the
same document were submitted in the same batch
to make sure that their translations were consistent.
Translators were specifically instructed to transliter-
ate all named entities to the target language follow-
ing the same conventions used in Wikipedia, from
which the English context paragraphs in SQuAD
originally come.

In order to facilitate easy annotations of answer
spans, we chose the most frequent answer for each
question and marked its beginning and end in the
context paragraph through placeholder symbols

10https://gengo.com

(e.g. “this is *0* an example span #0# delimited
by placeholders”). Translators were instructed to
keep the placeholders in the relevant position in
their translations, and had access to an online val-
idator to automatically verify that the format of
their output was correct.

C Additional results

We show the complete results for cross-lingual
word embedding mappings and joint multilingual
training on MLDoc and PAWS-X in Table 7. Table
8 reports exact match results on XQuAD, while
Table 9 reports results for all cross-lingual word
embedding mappings and joint multilingual train-
ing variants.

D Probing experiments

As probing tasks are only available in English, we
train monolingual models in each L2 of XNLI and
then align them to English. To control for the
amount of data, we use 3M sentences both for pre-
training and alignment in every language.11

Semantic probing We evaluate the representa-
tions on two semantic probing tasks, the Word in
Context (WiC; Pilehvar and Camacho-Collados,
2019) and Stanford Contextual Word Similarity
(SCWS; Huang et al., 2012) datasets. WiC is a
binary classification task, which requires the model
to determine if the occurrences of a word in two
contexts refer to the same or different meanings.
SCWS requires estimating the semantic similarity
of word pairs that occur in context. For WiC, we
train a linear classifier on top of the fixed sentence
pair representation. For SCWS, we obtain the con-
textual representations of the target word in each
sentence by averaging its constituent word pieces,
and calculate their cosine similarity.

Syntactic probing We evaluate the same mod-
els in the syntactic probing dataset of Marvin and
Linzen (2018) following the same setup as Gold-
berg (2019). Given minimally different pairs of
English sentences, the task is to identify which of
them is grammatical. Following Goldberg (2019),
we feed each sentence into the model masking the
word in which it differs from its pair, and pick the
one to which the masked language model assigns
the highest probability mass. Similar to Goldberg

11We leave out Thai, Hindi, Swahili, and Urdu as their
corpus size is smaller than 3M.

https://gengo.com
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en es de el ru tr ar vi th zh hi

Paragraph 142.4 160.7 139.5 149.6 133.9 126.5 128.2 191.2 158.7 147.6 232.4
Question 11.5 13.4 11.0 11.7 10.0 9.8 10.7 14.8 11.5 10.5 18.7
Answer 3.1 3.6 3.0 3.3 3.1 3.1 3.1 4.5 4.1 3.5 5.6

Table 5: Average number of tokens for each language in XQuAD. The statistics were obtained using Jieba for
Chinese and the Moses tokenizer for the rest of the languages.

Lang Context paragraph w/ answer spans Questions

en The heat required for boiling the water and supplying the
steam can be derived from various sources, most com-
monly from [burning combustible materials]1 with an
appropriate supply of air in a closed space (called vari-
ously [combustion chamber]2, firebox). In some cases
the heat source is a nuclear reactor, geothermal energy,
[solar]3 energy or waste heat from an internal combus-
tion engine or industrial process. In the case of model or
toy steam engines, the heat source can be an [electric]4
heating element.

1. What is the usual source of heat for boiling water
in the steam engine?

2. Aside from firebox, what is another name for the
space in which combustible material is burned in
the engine?

3. Along with nuclear, geothermal and internal com-
bustion engine waste heat, what sort of energy
might supply the heat for a steam engine?

4. What type of heating element is often used in toy
steam engines?

es El calor necesario para hervir el agua y suministrar el
vapor puede derivarse de varias fuentes, generalmente de
[la quema de materiales combustibles]1 con un sum-
inistro adecuado de aire en un espacio cerrado (llamado
de varias maneras: [cámara de combustión]2, chime-
nea...). En algunos casos la fuente de calor es un reactor
nuclear, energı́a geotérmica, [energı́a solar]3 o calor
residual de un motor de combustión interna o proceso
industrial. En el caso de modelos o motores de vapor
de juguete, la fuente de calor puede ser un calentador
[eléctrico]4.

1. ¿Cuál es la fuente de calor habitual para hacer
hervir el agua en la máquina de vapor?

2. Aparte de cámara de combustión, ¿qué otro nom-
bre que se le da al espacio en el que se quema el
material combustible en el motor?

3. Junto con el calor residual de la energı́a nuclear,
geotérmica y de los motores de combustión in-
terna, ¿qué tipo de energı́a podrı́a suministrar el
calor para una máquina de vapor?

4. ¿Qué tipo de elemento calefactor se utiliza a
menudo en las máquinas de vapor de juguete?

zh 让水沸腾以提供蒸汽所需热量有多种来源，最常见
的是在封闭空间（别称有 [燃燃燃烧烧烧室室室]2 、火箱）中供
应适量空气来 [燃燃燃烧烧烧可可可燃燃燃材材材料料料]1 。在某些情况下，
热源是核反应堆、地热能、 [太太太阳阳阳能能能]3 或来自内燃
机或工业过程的废气。如果是模型或玩具蒸汽发动
机，还可以将 [电电电]4 加热元件作为热源。

1. 蒸汽机中让水沸腾的常用热源是什么?
2. 除了火箱之外，发动机内燃烧可燃材料的空
间的别名是什么?

3. 除了核能、地热能和内燃机废气以外，还有
什么热源可以为蒸汽机供能?

4. 玩具蒸汽机通常使用什么类型的加热元件?

Table 6: An example from XQuAD. The full dataset consists of 240 such parallel instances in 11 languages.

(2019), we discard all sentence pairs from the Mar-
vin and Linzen (2018) dataset that differ in more
than one subword token. Table 10 reports the re-
sulting coverage split into different categories, and
we show the full results in Table 11.
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MLDoc PAWS-X

en fr es de ru zh avg en fr es de zh avg

CLWE

300d ident 93.1 85.2 74.8 86.5 67.4 72.7 79.9 92.8 83.9 84.7 81.1 72.9 83.1
300d unsup 93.1 85.0 75.0 86.1 68.8 76.0 80.7 92.8 83.9 84.2 81.3 73.5 83.1
768d ident 94.7 87.3 77.0 88.7 67.6 78.3 82.3 92.8 85.2 85.5 81.6 72.5 83.5
768d unsup 94.7 87.5 76.9 88.1 67.6 72.7 81.2 92.8 84.3 85.5 81.8 72.1 83.3

JOINT
MULTI

32k voc 92.6 81.7 75.8 85.4 71.5 66.6 78.9 91.9 83.8 83.3 82.6 75.8 83.5
64k voc 92.8 80.8 75.9 84.4 67.4 64.8 77.7 93.7 86.9 87.8 85.8 80.1 86.8
100k voc 92.2 74.0 77.2 86.1 66.8 63.8 76.7 93.1 85.9 86.5 84.1 76.3 85.2
200k voc 91.9 82.1 80.9 89.3 71.8 66.2 80.4 93.8 87.7 87.5 87.3 78.8 87.0

Table 7: MLDoc and PAWS-X results (accuracy) for all CLWE and JOINTMULTI variants.

en es de el ru tr ar vi th zh hi avg

CLWE

300d ident 72.5 39.7 33.6 23.5 29.9 11.8 18.5 16.1 16.5 17.9 10.0 26.4
300d unsup 72.5 39.2 34.5 24.8 30.4 12.2 14.7 6.5 16.0 16.1 10.4 25.2
768d ident 73.1 40.6 32.9 20.1 30.7 10.8 14.2 11.8 12.3 14.0 9.1 24.5
768d unsup 73.1 41.5 31.8 21.0 31.0 12.1 14.1 10.5 10.0 13.2 10.2 24.4

JOINT
MULTI

32k voc 68.3 41.3 44.3 31.8 45.0 28.5 36.2 36.9 39.2 40.1 27.5 39.9
64k voc 71.3 48.2 49.9 40.2 50.9 33.7 41.5 45.0 43.7 36.9 36.8 45.3
100k voc 71.5 49.8 51.2 41.1 51.8 33.0 43.7 45.3 44.5 40.8 36.6 46.3
200k voc 72.1 55.3 55.2 48.0 52.7 40.1 46.6 47.6 45.8 38.5 42.3 49.5

JOINT
PAIR

Joint voc 71.7 47.8 57.6 38.2 53.4 35.0 47.4 49.7 44.3 47.1 38.8 48.3
Disjoint voc 72.2 52.5 56.5 47.8 55.0 43.7 49.0 49.2 43.9 50.0 39.1 50.8

MONO
TRANS

Subword emb 72.3 47.4 42.4 43.3 46.4 30.1 42.6 45.1 39.0 39.0 32.4 43.6
+ pos emb 72.9 54.3 48.4 47.3 47.6 6.1 41.1 47.6 38.6 45.0 9.0 41.6
+ noising 69.6 51.2 52.4 50.2 51.0 6.9 43.0 46.3 46.4 48.1 10.7 43.2
+ adapters 69.6 51.4 51.4 50.2 51.4 44.5 48.8 47.7 45.6 49.2 45.1 50.5

Table 8: XQuAD results (exact match).

en es de el ru tr ar vi th zh hi avg

CLWE

300d ident 84.1 56.8 51.3 43.4 47.4 25.5 35.5 34.5 28.7 25.3 22.1 41.3
300d unsup 84.1 56.8 51.8 42.7 48.5 24.4 31.5 20.5 29.8 26.6 23.1 40.0
768d ident 84.2 58.0 51.2 41.1 48.3 24.2 32.8 29.7 23.8 19.9 21.7 39.5
768d unsup 84.2 58.9 50.3 41.0 48.5 25.8 31.3 27.3 24.4 20.9 21.6 39.5

JOINT
MULTI

32k voc 79.3 59.5 60.3 49.6 59.7 42.9 52.3 53.6 49.3 50.2 42.3 54.5
64k voc 82.3 66.5 67.1 60.9 67.0 50.3 59.4 62.9 55.1 49.2 52.2 61.2
100k voc 82.6 68.9 68.9 61.0 67.8 48.1 62.1 65.6 57.0 52.3 53.5 62.5
200k voc 82.7 74.3 71.3 67.1 70.2 56.6 64.8 67.6 58.6 51.5 58.3 65.7

Table 9: XQuAD results (F1) for all CLWE and JOINTMULTI variants.
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coverage

Subject-verb agreement

Simple 80 / 140 (57.1%)
In a sentential complement 960 / 1680 (57.1%)
Short VP coordination 480 / 840 (57.1%)
Long VP coordination 320 / 400 (80.0%)
Across a prepositional phrase 15200 / 22400 (67.9%)
Across a subject relative clause 6400 / 11200 (57.1%)
Across an object relative clause 17600 / 22400 (78.6%)
Across an object relative (no that) 17600 / 22400 (78.6%)
In an object relative clause 5600 / 22400 (25.0%)
In an object relative (no that) 5600 / 22400 (25.0%)

Reflexive anaphora

Simple 280 / 280 (100.0%)
In a sentential complement 3360 / 3360 (100.0%)
Across a relative clause 22400 / 22400 (100.0%)

Table 10: Coverage of our systems for the syntactic probing dataset. We report the number of pairs in the orig-
inal dataset by Marvin and Linzen (2018), those covered by the vocabulary of our systems and thus used in our
experiments, and the corresponding percentage.

mono xx→en aligned

en en fr es de el bg ru tr ar vi zh avg

Subject-verb agreement

Simple 91.2 76.2 90.0 93.8 56.2 97.5 56.2 78.8 72.5 67.5 81.2 71.2 76.5
In a sentential complement 99.0 65.7 94.0 92.1 62.7 98.3 80.7 74.1 89.7 71.5 78.9 79.6 80.7
Short VP coordination 100.0 64.8 66.9 69.8 64.4 77.9 60.2 88.8 76.7 73.3 62.7 64.4 70.0
Long VP coordination 96.2 58.8 53.4 60.0 67.5 62.5 59.4 92.8 62.8 75.3 62.5 64.4 65.4
Across a prepositional phrase 89.7 56.9 54.6 52.8 53.4 53.4 54.6 79.6 54.3 59.9 57.9 56.5 57.6
Across a subject relative clause 91.6 49.9 51.9 48.3 52.0 53.2 56.2 78.1 48.6 58.9 55.4 52.3 55.0
Across an object relative clause 79.2 52.9 56.2 53.3 52.4 56.6 57.0 63.1 52.3 59.0 54.9 54.5 55.7
Across an object relative (no that) 77.1 54.1 55.9 55.9 53.1 56.2 59.7 63.3 53.1 54.9 55.9 56.8 56.3
In an object relative clause 74.6 50.6 59.9 66.4 59.4 61.1 49.8 60.4 42.6 45.3 56.9 56.3 55.3
In an object relative (no that) 66.6 51.7 57.1 64.9 54.9 59.4 49.9 57.0 43.7 46.6 54.9 55.4 54.1
Macro-average 86.5 58.2 64.0 65.7 57.6 67.6 58.4 73.6 59.6 61.2 62.1 61.1 62.7

Reflexive anaphora

Simple 90.0 69.3 63.6 67.9 55.0 69.3 56.4 89.3 75.0 87.1 58.6 60.7 68.4
In a sentential complement 82.0 56.3 63.9 73.2 52.7 65.7 59.1 70.8 71.7 84.5 59.8 53.9 64.7
Across a relative clause 65.6 55.0 54.5 58.6 52.3 55.8 52.5 66.1 61.4 73.3 56.9 50.9 57.9
Macro-average 79.2 60.2 60.7 66.6 53.3 63.6 56.0 75.4 69.4 81.6 58.4 55.2 63.7

Table 11: Complete syntactic probing results (accuracy) of a monolingual model and monolingual models trans-
ferred to English on the syntactic evaluation test set (Marvin and Linzen, 2018).


