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Abstract

While automatic term extraction is a well-
researched area, computational approaches to
distinguish between degrees of technicality are
still understudied. We semi-automatically cre-
ate a German gold standard of technicality
across four domains, and illustrate the im-
pact of a web-crawled general-language cor-
pus on predicting technicality. When defin-
ing a classification approach that combines
general-language and domain-specific word
embeddings, we go beyond previous work and
align vector spaces to gain comparative em-
beddings. We suggest two novel models to
exploit general- vs. domain-specific compar-
isons: a simple neural network model with
pre-computed comparative-embedding infor-
mation as input, and a multi-channel model
computing the comparison internally. Both
models outperform previous approaches, with
the multi-channel model performing best.

1 Introduction

Automatic term extraction, i.e. the task of extract-
ing linguistic expressions characteristic to a spe-
cialized domain, is a long-researched field within
natural language processing. Assessing the tech-
nicality of the extracted terms, however, is still a
niche within this area: technicality refers to the de-
gree to which a term is specialized and exclusively
used by experts in a domain. Up to date, studies on
term technicality are mostly restricted to medical
terminology and relate to the communication be-
tween doctors and patients. Especially in times of
growing amounts of domain-specific websites with
both lay and expert users (e.g. DIY ‘do-it-yourself’
communities, such as 1-2-do.com), the communi-
cation between experts and lays becomes increas-
ingly important across all specialized domains. Fur-
thermore, term technicality prediction is important
for a range of tasks such as automatic thesaurus

creation, assessing text specialization, and domain
knowledge acquisition. Above all, predicting tech-
nicality can be considered a more fine-grained and
expressive form of terminology extraction.

In this work, we first semi-automatically col-
lect German specialized domain corpora to cre-
ate a gold standard of term technicality across
four domains: automotive, cooking, hunting and
DIY. Based on a qualitative analysis of terminolog-
ical phenomena and variants of ambiguity across
domain-specific and general-language corpora, we
then suggest two methods to explicitly integrate not
only vector space model representations derived
from the corpora, but also comparisons across the
vector spaces. In a first approach, we enrich the
combined general-language and domain-specific
word embeddings with a difference vector as input
for a classification system. In a second approach
we design a multi-channel feed-forward neural net-
work with a Siamese network component to repre-
sent the vector comparison internally.

2 Related Work

Existing studies on technicality predominantly fo-
cus on levels of familiarity or difficulty of termi-
nology in medical, biomedical or health domains.
Term familiarity refers to a user’s subjective un-
derstanding of term technicality. These studies
typically rely on classical readability features such
as frequency, term length, syllable count, the Dale-
Chall readability formula and affixes (Zeng et al.,
2005; Zeng-Treitler et al., 2008; Grabar et al., 2014;
Vinod Vydiswaran et al., 2014). They further make
use of domain-specific terminology attributes such
as neo-classical word components, given that medi-
cal terminology is strongly influenced by Greek and
Latin (Deléger and Zweigenbaum, 2009; Bouamor
et al., 2016). Besides the feature specification, the
majority of studies exploits contrastive approaches.

1-2-do.com
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Contrastive approaches compare a term’s distribu-
tion in a domain and a reference corpus, for exam-
ple a general-language corpus. Furthermore, for
technicality prediction, often expert (medical) texts
are compared against reference lay texts. Only a
small number of studies relies on context-based
approaches, e.g. Zeng-Treitler et al. (2008) use a
contextual network; Bouamor et al. (2016) exploit
language models; Pérez (2016) compares colloca-
tion networks.

For standard term extraction, contrastive tech-
niques represent one of the main strands of method-
ologies, by comparing a term candidate’s frequen-
cies in a domain-specific and a general-language
corpus (Ahmad et al., 1994; Rayson and Garside,
2000; Drouin, 2003; Kit and Liu, 2008; Bonin
et al., 2010; Kochetkova, 2015; Lopes et al., 2016;
Mykowiecka et al., 2018, i.a.). Recent approaches
use word embeddings trained separately on con-
trastive corpora; e.g. Amjadian et al. (2016, 2018)
concatenate general and domain-specific word em-
beddings and use them as input for classifiers, such
as a multilayer perceptron. Similarly, Hazem and
Morin (2017) and Liu et al. (2018) apply such a
concatenation to represent a term in one language,
as data enrichment pre-step for bilingual terminol-
ogy extraction.

In sum, approaches using contrastive corpora
are popular in both automatic term extraction and
term technicality prediction studies. The few ap-
proaches that use word embeddings as basis for
a contrastive approach separately train word em-
beddings on general-language and domain corpora.
In our work, we extend these methodologies by
aligning vector spaces in order to more adequately
represent meaning variation across corpora.

3 Definition of Technicality

According to Ha and Hyland (2017), there is no
consensus among researchers about what exactly
defines technicality. They provide an overview of
what characterizes technical vocabulary, and ob-
serve two main categories. On the one hand, tech-
nical terms often exhibit a narrow range of senses
specific to the domain. They are only understood
by a limited set of people, because they require
domain knowledge. On the other hand, there are
terms which are also frequently used in general
language. These terms are ambiguous: they carry
specialized meanings in a particular domain which
are different to the general-language meanings.

Corpus sizes Preprocessed Lemma:POS
Cooking 4.3 M 2.5 M
Automotive 4.9 M 2.3 M
DIY 4.0 M 2.1 M
Hunting 0.7 M 0.3 M
SdeWaC 778 M 326 M

Table 1: Sizes of corpora. “Preprocessed”
refers to the lemmatized corpus without punctuation,
“Lemma:POS” to the version reduced to content words.

As Ha and Hyland (2017), we see technicality as
a continuum. In the course of this paper, we adopt
a simplified handling and distinguish between three
broad classes of technicality: technical terms, basic
terms and non-terms.

4 Data and Gold Standard Creation

Data. We collect German texts for four domains:
automotive, cooking, DIY and hunting. Besides
including technical handbooks, we crawl topic-
specific data from Wikipedia1 and similar resources
such as cooking recipes from cooking homepages
(e.g. kochwiki.de), and car repair and DIY in-
structions from wikihow.de. As general-language
reference corpus, we use SdeWaC (Faaß and Eckart,
2013), a cleaned version of the web-crawled cor-
pus deWaC (Baroni et al., 2009). All corpora
are lemmatized and POS-tagged with the TreeTag-
ger (Schmid, 1995), and reduced to content words
(nouns, verbs and adjectives). We follow the pre-
processing steps described in Schlechtweg et al.
(2019) that led to the best results in that study. The
corpus sizes are shown in Table 1.

Gold Standard. We select all words as term can-
didates with a minimum frequency of 10 in both
the domain corpus and SdeWaC. The gold stan-
dard thus contains both simple and complex terms,
the latter in the form of closed compounds. We
did not extract multi-word terms other than closed
compounds because we would have needed spe-
cific procedures to identify them (e.g. by chunking
or by using association measures to identify valid
collocations). Even more importantly, multi-word
expressions are prone to variation (e.g. one could
say ‘wood drill’ or ‘drill for wood’) and it is likely
to not find all variants in the glossaries and other
resources we use to create the gold standard.

1When using Wikipedia, we relied on group-
ing categories such as the category ‘automotive’
(https://de.wikipedia.org/wiki/Kategorie:
Kraftfahrzeugtechnik).

kochwiki.de
wikihow.de
https://de.wikipedia.org/wiki/Kategorie:Kraftfahrzeugtechnik
https://de.wikipedia.org/wiki/Kategorie:Kraftfahrzeugtechnik
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Instead of relying on labour-intensive human
annotations, we determine the technicality labels
semi-automatically. First, we collect domain-
specific glossaries for each domain, i.e. textual
glosses and specialized terms with their meanings2.
These glossaries contain terms which require do-
main knowledge (especially if they are ambiguous)
and thus need to be explained to a lay person, i.e.
they contain technical terms. Secondly, we col-
lect thematic basic vocabulary lists (from thematic
base vocabulary books, thematic vocabulary train-
ing lists for foreign apprentices, etc.). These lists
contain the basic terminology of a domain, with a
low level of technicality. Finally, we collect indices
and tables of contents of domain-specific hand-
books, which include all kinds of terminological
vocabulary3. We label the data as follows:

1. technical term: a word is contained in a glos-
sary, but not in a basic vocabulary list

2. basic term: a word is contained in a basic
vocabulary list, but not in a glossary

3. non-term: all other words, which do not over-
lap more than 4 characters with any term in
the glossaries, the basic vocabulary lists, the
indices or the table of contents

The resulting sizes of the gold standards per do-
main are presented in Table 2. Overall, our semi-
automatic labeling method leads to 1,690 techni-
cal terms, 1,525 terms and 10,956 non-terms, a
total of 14,171 term candidates. To evaluate the
quality of the gold standard, we randomly extract
30 words per domain and per system-assigned la-
bel (which leads to a total of 30 × 4 × 3 = 360
words in total). Together with three random context
sentences, three annotators (including one of the
authors) rated the labeling. We obtain an average
Cohen’s κ inter-annotator agreement of 0.50 and an
average agreement with the gold standard of 0.47.
This corresponds to “moderate” agreement, which
we judge as sufficient for our gold standard, given
that agreement in term annotation is considered a
difficult task (Terryn et al., 2019).

2Cf. the Merriam-Webster definition of glossaries:
https://www.merriam-webster.com.

3We use information from handbooks and manuals, as
well as homepages. Sources from books include Dietsche
et al. (2019); Schroder (2006); Blass and Friederich (1974),
sources from homepages include both professionally revised
content (bosch-do-it.de) and user-created content (e.g.
https://de.wikibooks.org/wiki/Kochbuch/
_Glossar, https://de.wikipedia.org/wiki/
Liste_der_K%C3%BCchenfachw%C3%B6rter).

Cook. Hunt. Auto. DIY
Tech. Terms 384 250 706 350
Basic Terms 853 186 236 250
Non-Terms 853 1,176 5,010 2,962
Total 3,045 1,612 5,952 3,562

Table 2: Size of gold standard.

Qualitative Analysis We perform an in-depth
analysis of our four domain corpora to identify the
range of term phenomena and variants of ambiguity
within and across general and domain-specific data,
to motivate and apply an appropriate model.

The automotive domain contains many com-
pounds (such as Antriebsschlupfregelung ‘traction
slip control’) and English words (Frontairbags). In
the cooking and DIY corpora we find many com-
plex verbs (such as entgraten ‘deburr’ for DIY and
abbinden ‘thicken (a sauce)’ for cooking). Ambigu-
ous terminology is an outstanding characteristic of
the hunting domain, which contains many ambigu-
ous expressions completely unknown by lay people,
such as Licht ‘light’ as term for the eyes of game.
With all those variations, it seems likely that sur-
face form features will not be useful in a prediction
task. Furthermore, frequency-based features might
not be useful due to the high amount of ambiguity.

Regarding levels of technicality, we find techni-
cal terms that seem to be rather unambiguous and
have a very restricted usage, such as blanchieren
‘blanch’ for cooking, which often co-occurs with
Salzwasser ‘salted water’ in the domain-specific
context sentences. Surprisingly, we find very
similar domain-specific contexts in the general-
language corpus, where we would not expect them.
Since the general-language corpus is web-crawled,
it obviously contains a certain amount of domain-
specific texts as well; especially if a highly tech-
nical term is not ambiguous, the general-language
corpus contains only such contexts. Consequently,
the general-language and domain-specific contexts
are maximally similar in these cases. In contrast,
we assume that the contexts will vary more strongly
for basic terms, and for non-terms we do not expect
to find domain-specific sentences in the general-
language corpus at all.

The picture is different for ambiguous terminol-
ogy, where sense distributions vary across corpora.
For example, for the hunting term Licht ‘light/eyes
of game’ we both find general and domain-specific
meanings in the domain corpus; for the cooking
term Zauberstab ‘wand/hand blender’ senses seem

https://www.merriam-webster.com
bosch-do-it.de
https://de.wikibooks.org/wiki/Kochbuch/_Glossar
https://de.wikibooks.org/wiki/Kochbuch/_Glossar
https://de.wikipedia.org/wiki/Liste_der_K%C3%BCchenfachw%C3%B6rter
https://de.wikipedia.org/wiki/Liste_der_K%C3%BCchenfachw%C3%B6rter
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to be largely disjunctive across the corpora. Ex-
ample sentences for this phenomenon are given in
Table 3 for illustration.

Based on these observations, we suggest an ap-
proach by Amjadian et al. (2016, 2018) as basis to
detect degrees of technicality, since both general-
language and domain-specific word embeddings
will encode termhood attributes. On top of that, we
hypothesize that a comparison of the word vectors
represents valuable information for a prediction
system.

5 Models

Baselines As baseline, we use a decision tree
classifier (DT) with three standard features com-
monly used for term familiarity prediction: fre-
quency (corpus-size normalized), word length and
character n-grams. Further, we implement the ap-
proach by Amjadian et al. (2016, 2018) using a
Multilayer Perceptron (MLP) and the concatena-
tion of general-language word embeddings (GEN)
and domain-specific word embeddings (SPEC) of
a term candidate as input (MLP, GEN⊕SPEC), in
comparison to using only one of the embeddings.
We learn two separate word2vec SGNS vector
spaces (Mikolov et al., 2013) for GEN and SPEC.

Centering and Batch Normalization Across
neural models we apply batch normalization (Ioffe
and Szegedy, 2015), which normalizes the output
of a preceding activation layer by subtracting the
batch mean and then dividing by the batch standard
deviation. This reduces the effect of inhomoge-
neous input data, in our case the different domain
corpora. We further length-normalize and apply
element-wise column mean-centering to the em-
beddings, which has proven to be beneficial as pre-
processing step for rotational alignment of vector
spaces (Artetxe et al., 2016; Schlechtweg et al.,
2019) and as a general post-processing step for
word embeddings (Mu and Viswanath, 2018).

Note that the reason for the beneficial effect of
centering is still unclear. Artetxe et al. (2016) pro-
vide an intuitive explanation that centering moves
randomly similar embeddings further apart, while
Mu and Viswanath (2018) consider centering as
an operation making vectors “more isotropic”, i.e.,
more uniformly distributed across the directions in
the space.

Comparative Embeddings and Multi-Channel
Model Simple vector concatenation does not in-

corporate any kind of comparison of the embed-
dings. We thus suggest two novel models to exploit
general- vs. domain-specific comparisons: Com-
parative Embeddings (MLP, CON⊕DIFF) use an
MLP classifier and add a difference vector to the
input vector concatenation GEN⊕SPEC. Since the
word embeddings were trained separately on dif-
ferent corpora, this model requires an alignment of
the vector spaces. We use a state-of-the-art align-
ment method (Artetxe et al., 2016; Hazem and
Morin, 2017), where the best rotation GW of a
vector spaceG onto a vector space S is determined,
with the rotation matrix W . W is computed as
W = UV T , with U and V retrieved from Singular
Value Decomposition STG = UΣV T (Schöne-
mann, 1966). After the alignment, unit length is
applied again (since the vectors are not unit length
after alignment anymore) and the absolute differ-
ence vector (DIFF) is computed. The concatenation
vector GEN ⊕ SPEC ⊕ DIFF is then taken as input
to the model.

As our second model, we use a Multi-
Channel Feed-Forward Neural Network (MULTI-
CHANNEL). The network takes as input the un-
aligned GEN and SPEC vectors, and processes
each GEN and SPEC in a different channel. The
third channel is a variant of a Siamese network
(Chopra et al., 2005), a dual-channel network with
shared weights. Both GEN and SPEC are processed
through the shared weight layer, in order to map
them onto the same space. Then the element-wise
absolute difference is computed, and the output of
all three channels is concatenated. The network is
defined as:

h1 = σ1(W1 ∗ E(x1) + b1)

h2 = σ2(W2 ∗ E(x2) + b2)

h3a = σ3(W3 ∗ E(x1) + b3)

h3b = σ3(W3 ∗ E(x2) + b3)

d = |h3a − h3b|, d ∈ Rl

c = h1||h2||d, c ∈ R3l

p = softmax(c)

where x is a term candidate, andE(x) is the embed-
ding layer, a function E : xi → zi that maps the
word xi onto its corresponding 300-dimensional
vector zi. W denotes the weight matrices, b the
bias, σ the activation functions, and l denotes the
sizes of the hidden layers.
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General-language corpus Domain-specific corpus

Ich denke, mit Zauberstab kann man leichter zau-
bern.

1 Mixgerät, Handrührer mit Mixstab oder Zau-
berstab mit Schüssel

Nicht vergessen soll er bitte seinen Zauberstab
und es bleibt ihm freigestellt, ob er eine Eule, eine
Katze oder eine Kröte mitbringt.

Die Sauce abermals erhitzen, die Butter mit der
Stopfleber zugeben und die Sauce mit einem Zau-
berstab schaumig aufmixen.

Ich verließ die Bank und wanderte mit dem Blick
gebannt auf den Mond, taumelnd, wie hypnotisiert,
dem Licht entgegen.

Lichter ist die Bezeichnung für die Augen, die
Ohren werden auch Lauscher genannt.

Mit Betten, Licht und einem Tisch.
Auch bei schwachem Licht können sie noch sehr
gut sehen.

Table 3: Example context sentences for the ambiguous terms Zauberstab (cooking, upper table) and Licht (hunting,
lower table). The sentence with a lime green background contains the target term in its general-language sense.

Training We use SMOTE subsampling (Chawla
et al., 2002) and train our network to minimize the
cross-entropy loss, using back-propagation with
stochastic gradient descent. We perform a random-
ized search for hyperparameter optimization for
each model, i.e. subsampling parameter combi-
nations. We test with the following parameters:
hidden layers, epochs and batch size with values
between 16 and 64, learning rate between 0.001 and
0.3, momentum between 0.0 and 0.9, and tanh and
rectified linear unit (ReLU) as activation functions.
To initialize the weights of the embedding layer,
we use word2vec SGNS trained with a window size
of 2, negative sampling with k=1 and subsampling
with a threshold of t = 0.001. These parameter set-
tings obtained the best results in our recent study on
terminological meaning shifts (Schlechtweg et al.,
2019). We do not train embedding layer parameters
to maintain the original word meaning. Due to the
relatively small size of the training data, we use
5-fold cross-validation for training.

6 Results

We use Macro-Precision, Recall and F1-Score for
evaluation, to put more weight on the correctness of
the smaller classes Base Term and Technical Term.
The experiment results are shown in Table 4.

The multi-layer perceptron (MLP) results out-
perform the decision-tree (DT) baseline with stan-
dard term familiarity prediction features. Using
only a general-language vector GEN for classifi-
cation performs better than using only a domain-
specific vector SPEC, and the concatenation of both

Method P R F1
DT, basic features 0.56 0.58 0.57 (–)
MLP, SPEC 0.65 0.79 0.69 (0.62)
MLP, GEN 0.68 0.82 0.73 (0.72)
MLP, GEN⊕SPEC 0.76 0.89 0.81 (0.76)
MLP, CON⊕DIFF 0.84 0.94 0.88 (0.88)
MULTI-CHANNEL 0.86 0.94 0.89 (0.85)

Table 4: Macro-Precision (P), Recall (R) and F1-Score
results. The main results apply centering and batch nor-
malization; results without centering are in brackets.

(GEN⊕SPEC) performs better than each of them in-
dividually. This is most likely due to more training
data and having both domain-specific and general-
language parts in the general-language corpus.

The models integrating a notion of vector com-
parison perform best, with the multi-channel net-
work achieving slightly better results than the MLP
comparative embeddings. Centering improves all
but one results; i.e., it has an overall beneficial
effect for our task.

7 Conclusion

We semi-automatically created the first large-scale
gold standard for technicality prediction across do-
mains and proposed two novel neural network mod-
els to fine-tune automatic terminology extraction
by distinguishing between degrees of technicality.
The models integrate general- vs. domain-specific
word embedding information in different ways. An
adapted Siamese multi-channel network model per-
formed best, and centering has an overall beneficial
effect on pre-processing the vector spaces.
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