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Abstract

Traditional Question Generation (TQG) aims
to generate a question given an input passage
and an answer. When there is a sequence of
answers, we can perform Sequential Question
Generation (SQG) to produce a series of inter-
connected questions. Since the frequently oc-
curred information omission and coreference
between questions, SQG is rather challenging.
Prior works regarded SQG as a dialog genera-
tion task and recurrently produced each ques-
tion. However, they suffered from problems
caused by error cascades and could only cap-
ture limited context dependencies. To this end,
we generate questions in a semi-autoregressive
way. Our model divides questions into differ-
ent groups and generates each group of them
in parallel. During this process, it builds two
graphs focusing on information from passages,
answers respectively and performs dual-graph
interaction to get information for generation.
Besides, we design an answer-aware attention
mechanism and the coarse-to-fine generation
scenario. Experiments on our new dataset con-
taining 81.9K questions show that our model
substantially outperforms prior works.

1 Introduction

Question Generation (QG) aims to teach machines
to ask human-like questions from a range of inputs
such as natural language texts (Du et al., 2017),
images (Mostafazadeh et al., 2016) and knowledge
bases (Serban et al., 2016). In recent years, QG has
received increasing attention due to its wide appli-
cations. Asking questions in dialog systems can en-
hance the interactiveness and persistence of human-
machine interactions (Wang et al., 2018). QG bene-
fits Question Answering (QA) models through data
augmentation (Duan et al., 2017) and joint learn-
ing (Sun et al., 2019). It also plays an important
role in education (Heilman and Smith, 2010) and
clinical (Weizenbaum et al., 1966) systems.

Traditional Question Generation (TQG) is de-
fined as the reverse task of QA, i.e., a passage and
an answer (often a certain span from the passage)
are provided as inputs, and the output is a ques-
tion grounded in the input passage targeting on the
given answer. When there is a sequence of answers,
we can perform Sequential Question Generation
(SQG) to produce a series of interconnected ques-
tions. Table 1 shows an example comparing the two
tasks. Intuitively, questions in SQG are much more
concise and we can regard them with given answers
as QA-style conversations. Since it is more natural
for human beings to test knowledge or seek infor-
mation through coherent questions (Reddy et al.,
2019), SQG has wide applications, e.g., enabling
virtual assistants to ask questions based on previous
discussions to get better user experiences.

SQG is a challenging task in two aspects. First,
information omissions between questions lead to
complex context dependencies. Second, there are
frequently occurred coreference between questions.
Prior works regarded SQG as a dialog generation
task (namely conversational QG) where questions
are generated autoregressively (recurrently), i.e.,
a new question is produced based on previous out-
puts. Although many powerful dialog generation
models can be adopted to address the challenges
mentioned above, there are two major obstacles.
First, these models suffer from problems caused by
error cascades. Empirical results from experiments
reveal that the later generated questions tend to be-
come shorter with lower quality, especially becom-
ing more irrelevant to given answers, e.g., “Why?”,
“What else?”. Second, models recurrently gener-
ating each question struggle to capture complex
context dependencies, e.g., long-distance corefer-
ence. Essentially, SQG is rather different from
dialog generation since all answers are given in
advance and they act as strict semantic constraints
during text generation.
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(1) A small boy named [John]1 was at the park one day.
(2) He was [swinging]2 [on the swings]3 and [his friend]4 named [Tim]5 [played on the slide]6.
(3) John wanted to play on the slide now.
(4) He asked Tim [if he could play on the slide]7.
(5) Tim said [no]8, and he cried.
Turn TQG SQG Answer

1 Who was at the park? Who was at the park? John
2 What was John doing at the park? What was he doing there? swinging
3 Where was John swinging? On what? on the wings
4 Who was with John at the park? Who was he with? his friend
5 What is the name of John’s friend? Named? Tim
6 What was Tim doing? What was he doing? played on the side
7 What did John asked Tim? What did John asked him? if he could play on the slide
8 What did Tim say to John? What did he say? no

Table 1: Comparison of Traditional Question Generation (TQG) and Sequential Question Generation (SQG). The
given passage contains five sentences, and we mark the given answers in the passage as blue.

To deal with these problems, we perform SQG in
a semi-autoregressive way. More specifically, we
divide target questions into different groups (ques-
tions in the same group are closely-related) and
generate all groups in parallel. Especially, our sce-
nario becomes non-autoregressive if each group
only contains a single question. Since we eliminate
the recurrent dependencies between questions in
different groups, the generation process is much
faster and our model can better deal with the prob-
lems caused by error cascades. To get informa-
tion for the generation process, we perform dual-
graph interaction where a passage-info graph and
an answer-info graph are constructed and itera-
tively updated with each other. The passage-info
graph is used for better capturing context depen-
dencies, and the answer-info graph is used to make
generated questions more relevant to given answers
with the help of our answer-aware attention mech-
anism. Besides, a coarse-to-fine text generation
scenario is adopted for the coreference resolution
between questions.

Prior works performed SQG on CoQA (Reddy
et al., 2019), a high-quality dataset for conversa-
tional QA. As will be further illustrated, a number
of data in CoQA are not suitable for SQG. Some
researchers (Gao et al., 2019) directly discarded
these data, but the remaining questions may be-
come incoherent, e.g., the antecedent words for
many pronouns are unclear. To this end, we build
a new dataset from CoQA containing 81.9K rela-
beled questions. Above all, the main contributions
of our work are:

• We build a new dataset containing 7.2K pas-
sages and 81.9K questions from CoQA. It is
the first dataset specially built for SQG as far
as we know.

• We perform semi-autoregressive SQG under
dual-graph interaction. This is the first time
that SQG is not regarded as a dialog genera-
tion task. We also propose an answer-aware
attention mechanism and a coarse-to-fine gen-
eration scenario for better performance.

• We use extensive experiments to show that our
model outperforms previous work by a sub-
stantial margin. Further analysis illustrated
the impact of different components.

Dataset for this paper is available at https://
github.com/ChaiZ-pku/Sequential-QG.

2 Related Work

2.1 Traditional Question Generation

TQG was traditionally tackled by rule-based meth-
ods (Lindberg et al., 2013; Mazidi and Nielsen,
2014; Hussein et al., 2014; Labutov et al., 2015),
e.g., filling handcrafted templates under certain
transformation rules. With the rise of data-driven
learning approaches, neural networks (NN) have
gradually taken the mainstream. Du et al. (2017)
pioneered NN-based QG by adopting the Seq2seq
architecture (Sutskever et al., 2014). Many ideas
were proposed since then to make it more power-
ful, including answer position features (Zhou et al.,
2017), specialized pointer mechanism (Zhao et al.,
2018), self-attention (Scialom et al., 2019), answer
separation (Kim et al., 2019), etc. In addition, en-
hancing the Seq2seq model into more complicated
structures using variational inference, adversarial
training and reinforcement learning (Yao et al.,
2018; Kumar et al., 2019) have also gained much
attention. There are also some works performing
TQG under certain constraints, e.g., controlling the

https://github.com/ChaiZ-pku/Sequential-QG
https://github.com/ChaiZ-pku/Sequential-QG
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topic (Hu et al., 2018) and difficulty (Gao et al.,
2018) of questions. Besides, combining QG with
QA (Wang et al., 2017; Tang et al., 2017; Sun et al.,
2019) is also focused by many researchers.

2.2 Sequential Question Generation

As human beings tend to use coherent questions
for knowledge testing or information seeking, SQG
plays an important role in many applications. Prior
works regarded SQG as a dialog generation task
(namely conversational QA). Pan et al. (2019) pre-
trained a model performing dialog generation, and
then fine-tuned its parameters by reinforcement
learning to make generated questions relevant to
given answers. Gao et al. (2019) iteratively gener-
ated questions from previous outputs and leveraged
off-the-shelf coreference resolution models to intro-
duce a coreference loss. Besides, additional human
annotations were performed on sentences from in-
put passages for conversation flow modeling.

Since SQG is essentially different from dialog
generation, we discard its dialog view and propose
the first semi-autoregressive SQG model. Com-
pared with using the additional human annotation
in Gao et al. (2019), our dual-graph interaction
deals with context dependencies automatically. Be-
sides, our answer-aware attention mechanism is
much simpler than the fine-tuning process in Pan
et al. (2019) to make outputs more answer-relevant.

3 Dataset

As the reverse task of QA, QG is often performed
on existing QA datasets, e.g., SQuAD (Rajpurkar
et al., 2016), NewsQA (Trischler et al., 2016), etc.
However, questions are independent in most QA
datasets, making TQG the only choice. In recent
years, the appearance of large-scale conversational
QA datasets like CoQA (Reddy et al., 2019) and
QuAC (Choi et al., 2018) makes it possible to train
data-driven SQG models, and the CoQA dataset
was widely adopted by prior works. Since the test
set of CoQA is not released to the public, its train-
ing set (7.2K passages with 108.6K questions) was
split into new training and validation set, and its
validation set (0.5K passages with 8.0K questions)
was used as the new test set.

Different from traditional QA datasets where
the answers are certain spans from given passages,
answers in CoQA are free-form text1 with cor-

1Only 66.8% of the answers overlap with the passage after
ignoring punctuations and case mismatches.

responding evidence highlighted in the passage.
This brings a big trouble for QG. As an example,
consider the yes/no questions counting for 19.8%
among all questions. Given the answer “yes” and a
corresponding evidence “...the group first met on
July 5 , 1967 on the campus of the Ohio state uni-
versity...”, there are many potential outputs, e.g.,
“Did the group first met in July?”, “Was the group
first met in Ohio state?”. When considering the
context formed by previous questions, the potential
outputs become even more (the original question in
CoQA is “Was it founded the same year?”). When
there are too many potential outputs with signifi-
cantly different semantic meanings, training a con-
verged QG model becomes extremely difficult. For
this reason, Gao et al. (2019) directly discarded
questions that cannot be answered by spans from
passages. However, the remaining questions can be-
come incoherent, e.g., antecedent words for many
pronouns become unclear.

To this end, we build a new dataset from CoQA
by preserving all 7.7K passages and rewriting all
questions and answers. More specifically, we first
discarded questions that are unsuitable for SQG. To
do so, three annotators were hired to vote for the
preservation/deletion of each question. A question
is preserved if and only if it can be answered by
a certain span from the input passage2. As a re-
sult, most deleted questions were yes/no questions
and unanswerable questions. Besides, the kappa
score between results given by different annotators
was 0.83, indicating that there was a strong inter-
agreement between annotators. For the remaining
QA-pairs, we preserved their original order and
replaced all answers by spans from input passages.
After that, we rewrote all questions to make them
coherent. To avoid over-editing, annotators were
asked to modify as little as possible. It turned out
that in most cases, they only needed to deal with
coreference since the prototype of pronouns were
no longer existed. To further guarantee the annota-
tion quality, we hired another project manager who
daily examined 10% of the annotations from each
annotator and provided feedbacks. The annotation
was considered valid only when the accuracy of
examined results surpasses 95%. Our annotation
process took 2 months, and we finally got a dataset
containing 7.7K passage with 81.9K QA-pairs.

2Using certain spans from input passages (instead of free-
formed text) as answers is a conversion in QG. In this way, the
number of potential output questions is greatly reduced.
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Figure 1: Architecture of our model. The example is corresponding with Table 1

4 Model

In this section, we formalize the SQG task and in-
troduce our model in details. As shown in Figure 1,
the model first builds a passage-info graph and an
answer-info graph by its passage-info encoder and
answer-info encoder respectively. After that, it per-
forms dual-graph interaction to get representations
for the decoder. Finally, different groups of ques-
tions are generated in parallel under a coarse-to-fine
scenario. Both encoders and decoder take the form
of Transformer architecture (Vaswani et al., 2017).

4.1 Problem Formalization

In SQG, we input a passage composed by n sen-
tences P = {Si}ni=1 and a sequence of l answers
{Ai}li=1, each Ai is a certain span of P . The tar-
get output is a series of questions {Qi}li=1, where
Qi can be answered by Ai according to the input
passage P and previous QA-pairs.

As mentioned above, we perform SQG in an
semi-autoregressive way, i.e., target questions are
divided into into different groups. Ideally, ques-
tions in the same group are expected to be closely-
related, while questions in different groups should
be as independent as possible. Our model takes a
simple but effective unsupervised question cluster-
ing method. The intuition is: if two answers come
from the same sentence, the two corresponding
questions are likely to be closely-related. More
specifically, if the k-th sentence Sk contains p
answers from {Ai}li=1, we cluster them into an
answer-group Gans

k = {Aj1 , Aj2 , ..., Ajp} where
j1 < j2 < ... < jp are continuous indexes from

{1, 2, ..., l}. By replacing each answer in Gans
k

with its corresponding question, we get a question-
group Gques

k = {Qj1 , Qj2 , ..., Qjp}, and we fur-
ther define a corresponding target-output Tk as
“Qj1 [sep]Qj2 [sep] ... [sep]Qjp” where “[sep]” is
a special token. In Table 1, there are four target
outputs T1, T2, T4, T5 (no T3 since the third sen-
tence in Table 1 do not contain any answer), T2 is
“What was he doing there? [sep] On What? [sep]
... [sep] What was Tim doing?” corresponding
with the second sentence, and T5 is “What did he
say?” corresponding with the last sentence. Sup-
posing there are m answer- and question-groups,
then our model generates all the m target-outputs
in parallel, i.e., all questions are generated in a
semi-autoregressive way.

4.2 Passage-Info encoder

As shown in Figure 1, our passage-info encoder
maps input sentences {Si}ni=1 into their sentence
representations {si}ni=1 where every si ∈ R2ds .
We regard each sentence as a sequence of words
and replace each word by its pre-trained word em-
beddings (Mikolov et al., 2013) which is a dense
vector. After that, the sequence of word embed-
dings is sent to a Transformer-encoder that outputs
a corresponding sequence of vectors. By averag-
ing these vectors, we get the local representation
slocali ∈ Rds of Si.

After we get the local representations of all sen-
tences {Si}ni=1 in passage P , another Transformer-
encoder is adopted to map the sequence {slocali }ni=1

into {sglobali }ni=1, where sglobali ∈ Rds is called the
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Figure 2: Illustration of answer embeddings and an
answer-attention head for the forth sentence in Table 1.

global representation for Si. In other words, the
passage-info encoder takes a hiarachical structure.
We expect the local and global representations cap-
ture intra- and inter- sentence context dependencies
respectively, and the final representation for Si is
si = [slocali ; sglobali ] ∈ R2ds .

4.3 Answer-Info Encoder
As described in Section 4.1, the input answers are
split into m answer-groups. For Gans

k correspond-
ing with the k-th sentence of the input passage, we
define {Gans

k , Sk} as a “rationale” Rk, and further
obtain its representation rk ∈ R2dr by our answer-
info encoder, which is based on a Transformer-
encoder regarding sentence Sk as its input.

To further consider information from Gans
k , two

more components are added into the answer-info
encoder, as shown in Figure 2. First, we adopt the
answer-tag features. For each word wi in sentence
Sk, the embedding layer computes [xw

i ;x
a
i ] ∈ Rdr

as its final embedding, where xw
i is the pre-trained

word embedding and xa
i contains answer-tag fea-

tures. More specifically, we give wi a label from
{O, B, I} if it is “outside”, “the beginning of”,
“inside of” any answer from Gans

k , and use a vec-
tor corresponding with this label as xa

i . Second,
we design the answer-aware attention mechanism.
In the multi-head attention layer, there are not
only lh vanilla “self-attention heads”, but also la
“answer-aware heads” for each answer in Gans

k .
In an answer-aware head corresponding with an-
swer A, words not belonging to A are masked out
during the attention mechanism. The output of
the Transformer-encoder is a sequence of vectors
Henc

k = {henc
k } (henc

k ∈ Rdr ) corresponding with
the input word sequence from Sk.

After getting Henc
k , we further send the se-

quence of vectors to a bi-directional GRU net-
work (Chung et al., 2014) and take its last hidden
state as the final rationale embedding rk ∈ R2dr .

4.4 Graph Construction

In our SQG task, the input passage contain n sen-
tences, which can be represented by {si}ni=1 ∈
R2ds leveraging the passage-info encoder. Among
all input sentences, only m of them contain certain
answers (m ≤ n), and we further define m ratio-
nales based on these sentences, {Gans

F (j), SF (j)}mj=1,
where the j-th rationale (j ∈ {1, 2, ...,m}) cor-
responds with the F (j)-th sentence of the input
passage (F (j) ∈ {1, 2, ..., n}). For the example in
Table 1, n = 5,m = 4, F (j) maps {1, 2, 3, 4} into
{1, 2, 4, 5} respectively. Using the answer-info en-
coder, we can get representations {rF (j)}mj=1 ∈
R2ds for all rationales.

We further build a passage-info graph V and an
answer-info graph U based on these representa-
tions. For the rationale corresponding with the k-th
sentence of the input passage, we add node uk, vk
in graph U ,V respectively. For the example in Ta-
ble 1, U is compused by {u1, u2, u4, u5} and V is
compused by {v1, v2, v4, v5}, as shown in Figure 1.
The initial representation for uk is computed by:

u
(0)
k = ReLU(Wu[rk; ek] + bu) ∈ Rdg (1)

where rk ∈ R2dr is the rationale representation,
ek ∈ Rde is the embedding of index k, and Wu ∈
R(de+2dr)×dg , bu ∈ Rdg are trainable parameters.
And the initial representation for vk is:

v
(0)
k = ReLU(Wv[sk; ek] + bv) ∈ Rdg (2)

where sk ∈ R2ds is the sentence representation and
Wv ∈ R(de+2ds)×dg , bv ∈ Rdg are parameters.

After adding these points, there arem nodes in U
and V respectively. For ui, uj ∈ U corresponding
with the i-th, j-th input sentences respectively, we
add an edge between them if |i − j| < δ (δ is a
hyper-parameter). Similarly, we add edges into V
and the two graphs are isomorphic.

4.5 Dual-Graph Interaction

In our answer-info graph U , node representations
contain information focused on input answers. In
the passage-info graph V , node representations cap-
ture inter- and intra-sentence context dependencies.
As mentioned above, a good question should be
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answer-relevant as well as capturing complex con-
text dependencies. So we should combine infor-
mation in both U and V . Our dual-graph interac-
tion is a process where U and V iteratively update
node representations with each other. At time step
t, representations u

(t−1)
i ,v

(t−1)
i are updated into

u
(t)
i ,v

(t)
i respectively under three steps.

First, we introduce the information transfer step.
Taking U as an example. Each u

(t−1)
i receives a(t)

i

from its neighbors (two nodes are neighbors if there
is an edge between them) by:

a
(t)
i =

∑
uj∈N (ui)

Wij u
(t−1)
j + bij (3)

whereN (ui) is composed by all neighbors of node
ui and Wij ∈ Rdg×dg , bij ∈ Rdg are parameters
controlling the information transfer. For ui, uj and
ui′ , uj′ whose |i− j| = |i′ − j′|, we use the same
W and b. In other words, we can first create a
sequence of matrices {W1,W2, ...} ∈ Rdg×dg and
vectors {b1, b2, ...} ∈ Rdg , and then use |i − j|
as the index to retrieve the corresponding Wij , bij .
For graph V , we similarly compute

ã
(t)
i =

∑
vj∈N (vi)

W̃ij v
(t−1)
j + b̃ij (4)

In the second step, we compute multiple gates.
For each u

(t−1)
i in U , we compute an “update gate”

y
(t)
i and a “reset gate” z

(t)
i by:

y
(t)
i = σ(Wy[a

(t)
i ;u

(t−1)
i ])

z
(t)
i = σ(Wz[a

(t)
i ;u

(t−1)
i ])

(5)

where Wy,Wz ∈ R2dg×dg are paramenters. Simi-
larly, for each v

(t−1)
i in V we compute:

ỹ
(t)
i = σ(W̃y[ã

(t)
i ;v

(t−1)
i ])

z̃
(t)
i = σ(W̃z[ã

(t)
i ;v

(t−1)
i ])

(6)

Finally, we perform the information interaction,
where each graph updates its node representations
under the control of gates computed by the other
graph. More specifically, node representations are
updated by:

u
(t)
i = z̃

(t)
i � u

(t−1)
i + (1− z̃

(t)
i ) �

tanh(Wa[a
(t)
i ; ỹ

(t)
i � u

(t−1)
i ])

v
(t)
i =z

(t)
i � v

(t−1)
i + (1− z

(t)
i ) �

tanh(W̃a[ã
(t)
i ;y

(t)
i � v

(t−1)
i ])

(7)

The idea of using gates computed by the other
graph to update node representations in each graph
enables the information in input passage and an-
swers interact more frequently, both of which act
as strong constraints to the output questions.

By iteratively performing the three steps for T
times, we get the final representations u

(T )
i and

v
(T )
i for ui ∈ U and vi ∈ V .

4.6 Decoder

For the k-th input sentence Sk containing certain
answers, our decoder generates the corresponding
target-output Tk. As mentioned above, the genera-
tion process of all target-outputs are independent.
The decoder is based on the Transformer-decoder
containing a (masked) multi-head self-attention
layer, a multi-head encoder-attention layer, a feed-
forward projection layer and the softmax layer.
To compute keys and values for the multi-head
encoder-attention layer, it leverages the outputs
from our answer-info encoder, i.e., it uses Henc

k de-
scribed in Section 4.3 to generate Tk corresponding
with the k-th sentence.

To generate coherent questions, we need to cap-
ture the context dependencies between input an-
swers and passages. To this end, both u

(T )
k and

v
(T )
k , which comes from the dual-graph interaction

process, are used as additional inputs for generat-
ing Tk. First, they are concatenated with the output
of each head from both (masked) multi-head self-
attention layer and multi-head encoder-attention
layer before sending to the next layer. Second, they
are concatenated with inputs of the feed-forward
projection layer. The two representations are also
expected to make generated questions more rele-
vant to given inputs.

4.7 Coarse-To-Fine Generation

Since the semi-autoregressive generation scenario
makes it more challenging to deal with corefer-
ences between questions (especially questions in
different groups), we perform question generation
in a coarse-to-fine manner. The decoder only needs
to generate “coarse questions” where all pronouns
are replaced by a placeholder “[p]”. To get final
results, we use an additional pre-trained corefer-
ence resolution model to fill pronouns into different
placeholders. To make a fair comparison, we use
the coreference resolution model (Clark and Man-
ning, 2016) adopted by prior works CoreNQG (Du
and Cardie, 2018) and CorefNet (Gao et al., 2019).



231

Model BLEU1 BLEU2 BLEU3 ROUGE METEOR Length
Seq2seq (Du et al., 2017) 28.72 10.16 6.30 31.75 13.10 5.78
CopyNet (See et al., 2017) 29.40 12.14 6.53 33.71 14.20 5.77

CoreNQG (Du and Cardie, 2018) 33.84 14.69 8.72 34.38 14.05 6.08
VHRED (Serban et al., 2017) 30.51 11.95 6.94 31.93 12.42 4.83

HRAN (Xing et al., 2018) 30.18 12.53 7.65 35.06 12.95 5.02
ReDR (Pan et al., 2019) 30.84 15.17 9.81 35.58 15.41 5.58

CorefNet (Gao et al., 2019) 32.72 16.01 10.97 37.48 16.09 5.96
Ours 35.70 19.64 12.06 38.15 17.26 6.03

Table 2: Experimental results. In each column, we bold / underline the best performance over all / baseline methods,
respectively. Under the evaluation of BLEU, ROUGE-L and METEOR, our model differs from others (except the
METEOR score of CorefNet) significantly based on the one-side paired t-test with p < 0.05.

5 Experiments

In this section, we first introduce the three kinds of
baselines. After that, we compare and analyse the
results of different models under both automatic
and human evaluation metrics.

5.1 Baselines

We compared our model with seven baselines that
can be divided into three groups. First, we used
three TQG models: the Seq2seq (Du et al., 2017)
model which pioneered NN-based QG, the Copy-
Net (See et al., 2017) model that introduced pointer
mechanism, and CoreNQG (Du and Cardie, 2018)
which used hybrid features (word, answer and
coreference embeddings) for encoder and adopted
copy mechanism for decoder. Second, since prior
works regarded SQG as a conversation generation
task, we directly used two powerful multi-turn dia-
log systems: the latent variable hierarchical recur-
rent encoder-decoder architecture VHRED (Serban
et al., 2017), and the hierarchical recurrent atten-
tion architecture HRAN (Xing et al., 2018). Third,
we used prior works mentioned above. For Pan
et al. (2019), we adopted the ReDR model which
had the best performance. For Gao et al. (2019),
we used the CorefNet model. Although a CFNet in
this paper got better results, it required additional
human annotations denoting the relationship be-
tween input sentences and target questions. So it is
unfair to compare CFNet with other methods.

It is worth mentioning that when generating
questions using the second and third groups of base-
lines, only previously generated outputs were
used as dialog history, i.e., the gold standard ques-
tions are remain unknown (in some prior works,
they were directly used as dialog history, which we
think is inappropriate in practice).

SQuAD CoQA Ours
Passage 117 271 271
Question 10.1 5.5 6.6
Answer 3.2 2.7 3.2

Table 3: Average number of words in passage, question
and answer in different datasets.

5.2 Automatic Evaluation Metrics

Following the conventions, we used BLEU (Pa-
pineni et al., 2002), ROUGE-L (Lin, 2004) and
METEOR (Lavie and Agarwal, 2007) as automatic
evaluation metrics. We also computed the average
word-number of generated questions. As shown
in Table 2, our semi-autoregressive model outper-
formed other methods substantially.

When we focus on the second and third groups of
baselines regarding SQG as multi-turn dialog gen-
eration tasks, we can find that models from the third
group are more powerful since they make better use
of information from input passages. Besides, mod-
els from the second group tend to generate shortest
questions. Finally, similar to the problem that di-
alog systems often generate dull and responses,
these models also suffer from producing general
but meaningless questions like “What?”, “How?”,
“And else?”.

When we compare the first and third groups of
baselines (which are all QG models), it is not sur-
prising that SQG models show more advantages
than TQG models, as they take the relationships
between questions into consideration. Besides,
CorefNet gets better performance among all base-
lines, especially ReDR. This indicates that com-
paring with implicitly performing reinforcement
learning through QA models, explicitly using tar-
get answers as inputs can be more effective.
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CoreNQG CorefNet Ours
Fluency 2.36 2.51 2.44

Coherence 1.53 2.04 2.17
Coreference 1.15 1.56 1.54

Answerability 1.12 1.18 1.45
Relevance 1.47 1.24 1.62

Table 4: Human evaluation results. Scores of each met-
ric ranges between 1 to 3 and larger scores are better.

Note that if we directly compare the performance
between SQG task and TQG task under the same
model (e.g., the Seq2seq model), evaluation scores
for TQG tasks are much higher, which is not sur-
prising since SQG is harder than TQG dealing with
dependencies between questions. Another fact lies
in the computation of automatic evaluation metrics.
As shown in Table 2, questions in SQG datasets
are much shorter than TQG. Since our automatic
evaluation metrics are based on n-gram overlaps
between generated and gold standard questions, the
scores significantly go down with the growth of n
(for this reason, the BLEU4 scores are not listed
in Table 2). This also illustrates the importance of
performing human evaluation.

5.3 Human Evaluation

It is generally acknowledged that automatic evalua-
tion metrics are far from enough for SQG. So we
perform human evaluation in five aspects. Fluency
measures if a question is grammatically correct and
is fluent to read. Coherence measures if a ques-
tion is coherent with previous ones. Coreference
measures if a question uses correct pronouns. An-
swerability measures if a question is targeting on
the given answer. Relevance measures if a ques-
tion is grounded in the given passage. Since per-
forming human evaluation is rather expensive and
time-consuming, we picked up the best TQG model
(CoreNQG), SQG model (CorefNet) to compare
with our model. We randomly selected 20 passages
from the test set with 207 given answers and asked
10 native speakers to evaluate the outputs of each
model independently. Under each aspect, reviewers
are asked to choose a score from {1, 2, 3}, where
3 indicates the best quality.

The average scores for each evaluation metric
are shown in Table 4. We can find that our model
gets the best or competitive performance in each
metric. When it comes to fluency, all models get
high performance, and the CorefNet that outputs

BLEU3 ROUGE METEOR
No interact 11.35 37.31 17.05
Uni-graph 9.86 36.44 15.87
Uni-heads 10.33 37.48 16.24
No co2fine 11.75 37.92 17.17
Non-auto 7.79 33.62 14.83

Ours 12.06 38.15 17.26

Table 5: Results for ablation tests.

shortest questions gets the best score. As for coher-
ence, CoreNQG gets poor results since it generates
questions independently. When it comes to corefer-
ence, our model only slightly lower than CorefNet,
which added direct supervision to attention weights
by a coreference resolution model. Finally, our
model gets the best performance on both answer-
abity and relevance. However, it is worth noticing
that all models get rather poor performances under
these two aspects, indicating that making a concise
question meaningful (i.e., targeting on given an-
swers) with more information from input passage
(i.e., performing proper information elimination)
is a major challenge in SQG. Besides, as pointed
out by Table 3, questions in our SQG dataset are
significantly shorter compared with TQG dataset,
making subtle errors much easier to be noticed.

6 Analysis

6.1 Ablation Test
In this section, we perform ablation test to verify
the influence of different components in our model.
First, we modify Equation 7 into
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to get the no interact model, i.e., two graphs are in-
dependently updated without any interaction. Sec-
ond, we build a uni-graph model by removing
the passage-info encoder (the remaining rationale
graph is updated similarly to Li et al. (2015)).
Third, we discard the attention-aware heads in the
rationale encoder to get a uni-heads model. Then,
we build the no co2fine model without the coarse-
to-fine generation scenario. Finally, we build a
non-auto model that performs SQG in an non-
autoregressive way, i.e., each question is generated
in parallel.
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Peter was a very sad puppy. He had been inside of the pet store for a very long time. In fact, he had been there for
[three months]1! Peter had seen many other puppies find a person; he began to wonder why he could not get one.
He thought that [maybe his fur was not pretty enough or maybe his bark was not loud enough]2. He tried and tried
to please every person who came to the store, but they all picked smaller puppies. However, one day all of this
changed. [Sammie]3 came into the store looking for [a golden puppy]4. She wanted a puppy she could snuggle
with. It so happened that Peter was very sad and tired that day. Sammie came to hold him. Peter wanted to show off
[his bark]5, but he was [too tired]6. He [fell right to sleep]7. Sammie loved him at once and loved holding him in her
arms. Sammie took [Peter]8 home that day, and they made lots of fun memories.
Turn Gold Standard CorefNet Ours

1 How long was Peter at pet store? How long he had been there? How long was Peter there?
2 Why couldn’t he get someone? What his fur was? What did he thought?
3 Who came into the store? Who came into the store? Who came into the store?
4 What for? What was Sammie looking? Who was she looking for?
5 What did peter wanted to show off? What Peter wanted show off? What he show off?
6 Why not? Why he wanted? What was he?
7 What did he do with her? And else? What did he do?
8 Who did she take? Who was Sammie took? What Sammie took that day?

Table 6: Example outputs from different models. We mark the given answers in the passage as blue.

As shown in Table 5, each component in our
model plays an important part. Results for the
no interact model indicate that compared with in-
dependently updating the passage-info graph and
answer-info graph, making these information more
interacted by our dual-graph interaction scenario
is more powerful. Not surprisingly, the uni-graph
model removing the passage encoder (i.e., less fo-
cusing on context dependencies between sentences
from input passage), and the uni-heads model dis-
carding our answer-aware attention mechanism
(i.e., less focusing on given answers) get significant
worse performance compared with our full model.
Besides, our coarse-to-fine scenario helps to bet-
ter deal with the dependencies between questions
since there are widespread coreferences. Finally,
although the architecture of non-auto model is a
special case of our model where each group only
contains a single question, the performance drops
significantly, indicating the importance of using
semi-autoregressive generation. However, the dual-
graph interaction still makes its performance better
than the Seq2seq and CopyNet in Table 2.

6.2 Running Examples

In Table 6, we present some generated examples
comparing our model and the strongest baseline
CorefNet. On the one hand, our model performs
better than CorefNet, especially that the output
questions are more targeting on given answers (turn
2, 6, 7). It also correctly deals with coreferences
(e.g., distinguishing “Peter” and “Sammie”). On
the other hand, the generated questions have poor
quality when gold standard questions involve more
reasoning (turn 2, 6). Besides, the gold standard
questions are more concise as well (turn 4, 6).

7 Conclusion

In this paper, we focus on SQG which is an
important yet challenging task. Different from
prior works regarding SQG as a dialog genera-
tion task, we propose the first semi-autoregressive
SQG model, which divides questions into differ-
ent groups and further generates each group of
closely-related questions in parallel. During this
process, we first build a passage-info graph, an
answer-info graph, and then perform dual-graph
interaction to get representations capturing the con-
text dependencies between passages and questions.
These representations are further used during our
coarse-to-fine generation process. To perform ex-
periments, we analyze the limitation of existing
datasets and create the first dataset specially used
for SQG containing 81.9K questions. Experimental
results show that our model outperforms previous
works by a substantial margin.

For future works, the major challenge is gen-
erating more meaningful, informative but concise
questions. Besides, more powerful question cluster-
ing and coarse-to-fine generation scenarios are also
worth exploration. Finally, performing SQG on
other types of inputs, e.g., images and knowledge
graphs, is an interesting topic.
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A Examples of Data Labeling

In Table 7, we use a typical example to show how
we relabeled CoQA. As introduced in our paper,
we first deleted questions that cannot be answered
by certain span from the passage. In Table 7, we
deleted QA-pairs in turn 15, 18, 19 since they are
yes/no questions, turn 3, 16 since the answer “fe-
male” is not a span from the input passage, and
turn 13 since its answer is scattered in the sentence
“Some of his cats have orange fur, some have black
fur, some are spotted and one is white”.

After deleting questions that are not suitable for
SQG, we replaced the remaining answers into cer-
tain spans from the input passage. As shown in
Table 7, in most cases the original answers were
already a certain span. We slightly modified an-
swers in turn 2, 7 from “Eight”, “Three” into “8”,
“3” respectively. Finally, we rewrote all remaining
questions to make them coherent. During this pro-
cess, we mainly deal with information omission
and coreference. In our example, we added a word
“feline” into questions in turn 14 since the question
13 was deleted.

B Details of Experiments

We used the 200-dimentional pre-trained GloVe
word embeddings 3 as initial value of word embed-
dings. During the training process, these embed-
dings were further fine-tuned. The NLTK4 package
was used for sentence splitting and word tokeniza-
tion. In our model, we set ds, dr, dg to 200, 256
and 128. For the passage-info encoder, we used 16
heads in the multil-attention layer. For the answer-
info encoder, we used 8 vanilla self-attention heads
and additional 6 answer-aware heads for each an-
swer. To construct the two graphs, we set δ into 3.
In our dual-graph interaction, we set T into 4.

To train our model, we used an Adam optimizer
with momentums β1 = 0.9, β2 = 0.99 and ε =
10−8 to minimize the loss function. We varied the
learning rate throughout training, including a warm-
up step and a decreasing step similar to the original
Transformer. Besides, we applied dropout between
0.4 and 0.5 to prevent over-fitting. Our model was
trained on two Nvidia RTX 2080Ti graphics cards.

Since we noticed that the available baseline
codes used different scripts to compute BLEU,

3https://nlp.stanford.edu/projects/
glove/

4https://www.nltk.org/

ROUGE and METEOR, we used new scripts5 to
compute the evaluation metrics in this paper.

5https://github.com/tylin/
coco-caption/tree/master/pycocoevalcap

https://nlp.stanford.edu/projects/glove/
https://nlp.stanford.edu/projects/glove/
https://www.nltk.org/
https://github.com/tylin/coco-caption/tree/master/pycocoevalcap
https://github.com/tylin/coco-caption/tree/master/pycocoevalcap
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Brendan loves cats. He owns 8 cats. He has 7 girl cats and only 1 boy cat. Brendan brushes
the cats’ hair every day. He makes sure to feed them every morning and evening and always
checks to see if the cats have water. Sometimes he feeds them special treats because he loves
them. Each cat gets 3 treats. He doesn’t give them food like chips and cake and candy, because
those foods aren’t good for cats. He likes to play with the cats. The cats like to chase balls of
paper that Brendan makes for them. Some of his cats have orange fur, some have black fur,
some are spotted and one is white. The white cat is Brendan’s favorite. She is the first cat he
owned. Her name is Snowball. When he first got Snowball she was a kitten. His other cats are
named Fluffy, Salem, Jackie, Cola, Snickers, Pumpkin and Whiskers.
turn Original QA-Pairs New QA-Pairs

1 What does he care for? (cats) What does he care for? (cats)
2 How many does he have? (Eight) How many does he have? (8)
3 Are there more males or females? (females) Deleted

4 How many? (7 girl cats and only 1 boy cat)
How many males and females?
(7 girl cats and only 1 boy cat)

5 What is groomed? (cat’s hair) What is groomed? (cat’s hair)
6 What do they get fed? (treats) What do they get fed? (treats)
7 How many? (Three) How many? (3)
8 Why (because he loves them) Why (because he loves them)

9
What foods are avoided?

(chips and cake and candy)
What foods are avoided?

(chips and cake and candy)

10
Why? (because those foods aren’t

good for cats)
Why? (because those foods

aren’t good for cats)
11 What toys do they like? (balls of paper) What toys do they like? (balls of paper)
12 Who creates them? (Brendan) Who creates them? (Brendan)

13
What colors are the felines?

(orange, black, spotted, and white)
Deleted

14
Which is the most liked?

(The white cat)
Which is the most liked?

(The white cat)
15 Is this his original one? (yes) Deleted
16 What is its gender? (female) Deleted
17 What does he call it? (Snowball) What does he call it? (Snowball)
18 Is there one called Binky? (No) Deleted
19 How about Scruff? (No) Deleted

Table 7: Example for data labeling.


