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Abstract

Large Transformer-based language models
can route and reshape complex information via
their multi-headed attention mechanism. Al-
though the attention never receives explicit su-
pervision, it can exhibit recognizable patterns
following linguistic or positional information.
Analyzing the learned representations and at-
tentions is paramount to furthering our under-
standing of the inner workings of these models.
However, analyses have to catch up with the
rapid release of new models and the growing
diversity of investigation techniques. To sup-
port analysis for a wide variety of models, we
introduce EXBERT, a tool to help humans con-
duct flexible, interactive investigations and for-
mulate hypotheses for the model-internal rea-
soning process. EXBERT provides insights
into the meaning of the contextual represen-
tations and attention by matching a human-
specified input to similar contexts in large an-
notated datasets. By aggregating the annota-
tions of the matched contexts, EXBERT can
quickly replicate findings from literature and
extend them to previously not analyzed mod-
els.

1 Introduction

Learned contextualized representations of a neu-
ral network can contain meaningful information.
Uncovering this information plays a vital role in
understanding and interpreting the learned struc-
ture of neural networks (Belinkov and Glass, 2019).
One way to identify information is to probe the
representations by using them as features in classi-
fiers for linguistic tasks, or by identifying contexts
that lead to similar patterns (Tenney et al., 2019b;
Conneau et al., 2018; Strobelt et al., 2017).

With Transformers (Vaswani et al., 2017) over-
taking recurrent models as the primary architec-
tures for many NLP tasks, analyzing attention has
become another common strategy for interpretabil-

ity (Raganato and Tiedemann, 2018a; Clark et al.,
2019). These efforts focus on selecting a model,
such as BERT (Devlin et al., 2019), and exploring
the Transformer’s contextual embeddings and atten-
tions across layers to determine whether and where
it learns to represent linguistic features. Previous
studies have uncovered specific attention heads that
learn particular dependencies (Vig and Belinkov,
2019; Clark et al., 2019).

However, once the standard linguistic probing
tasks are exhausted, it is challenging to develop
new hypotheses to test. Toward that end, interac-
tive visualizations provide a successful strategy to
develop new insights and strategies. Visualization
tools can offer concise summaries of useful infor-
mation and allow interaction with large models.
Attention visualizations have thus taken significant
steps toward these goals of making explorations
fast and interactive for the user (Vig, 2019). How-
ever, interpreting attention patterns without under-
standing the attended-to embeddings, or relying on
attention alone as a faithful explanation, can lead
to faulty interpretations (Brunner et al., 2019; Jain
and Wallace, 2019; Wiegreffe and Pinter, 2019; Li
et al., 2019).

To address this challenge, we developed
EXBERT, a tool that combines the advantages of
static analyses with a dynamic and intuitive view
into both the attentions and internal representations
of the underlying model. EXBERT provides these
insights for any user-specified model and corpus by
probing whether the representations capture mean-
ingful information. We demonstrate that EXBERT
can replicate insights from the analysis by Clark
et al. (2019) and easily extend it to other mod-
els. It is open-source, extensible, and compati-
ble with many current Transformer architectures,
both autoregressive and masked language models.
EXBERT is available at exbert.net.

exbert.net
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Figure 1: An overview of the different components of the tool. Users can enter a sentence in (a) and modify the
attention view through selections in (b). Self attention is displayed in (c), with attentions directed as coming from
the left column and pointing to the right. The blue matrix on the left shows a head’s attention (column) out of a
token (row), whereas the right-hand matrix shows attention into each token by each head. The top-k predictions
for each token are shown on hover in the gray box. The most similar tokens to the MASKed “escape” token in (c)
are shown and summarized in (d-g), taken from an annotated corpus (shown: Wizard of Oz). Every token in (d)
displays its linguistic metadata on hover. The metadata of the results in (d) are summarized in the histograms (f)
and (g) for the matched token (green highlight) and the token of max attention. The colored bars on the histogram
correspond to colors in the columns of (e), where the center column summarizes the metadata of the matched token,
and the adjacent columns represent the metadata of the words to the left and right of the matched token.

2 Background

2.1 Transformer Models

The Transformer architecture, as defined by
Vaswani et al. (2017), relies on multiple sequential
applications of self attention layers. Self-attention
is the process by which each token within an in-
put sequence Y of length N computes attention
weights over all tokens in the input. As part of this
process, the inputs are projected into a key, query,
and value representation with Wk, Wq, and Wv.
The Transformer applies I of these attention heads
in parallel, using separate weights. We denote each
head with the superscript (i).

A(i) = softmax
(
(YW (i)

q )(YW
(i)
k )>

)
.

This computation yields a matrix in RN×N where
the entry Aij represents the attention out of token

yi into token yj .1 The representation for each at-
tention head h(i) is then multiplied by the value,

h(i) = A(i)(YW (i)
v ).

The representations h(1), . . . , h(I) are concatenated
and followed by a linear projection layer. The out-
put of this projection we call the token embedding
E(l), which is used as input to layer l + 1.

2.2 Transformer Analysis
The analysis of learned contextual representation
in neural networks has been a widely investigated
topic in NLP (Belinkov and Glass, 2019). Be-
fore the advent of large pretrained models, anal-
yses focused on models trained for specific tasks
like machine translation. Some showed that Trans-
former models, similar to recurrent models, can

1For autoregressive models like GPT-2 (Radford et al.,
2019), this matrix is triangular since attention cannot point
toward unseen tokens.
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effectively encode syntactic properties in their rep-
resentations (Raganato and Tiedemann, 2018b;
Mareček and Rosa, 2018). Researchers have devel-
oped suites of probing techniques, agnostic to the
underlying model, that can capture these proper-
ties across many different linguistic tasks (Tenney
et al., 2019b; Conneau et al., 2018). Over the past
year, similar tests have primarily been applied to
BERT (Devlin et al., 2019) and its derivatives (e.g.,
Sanh et al., 2019; Liu et al., 2019). Similar to task-
specific models, Goldberg (2019) found that BERT
clearly encodes syntax within some of its attentions.
Moreover, Tenney et al. (2019a) demonstrated that
linguistic information is very localized within the
representations in different layers.

In parallel, individual attention heads of Trans-
former models have also received much focus.
Clark et al. (2019) showed that individual heads
recognize standard Part of Speech (POS) and De-
pendency (DEP) relationships (e.g., Objects of the
Preposition (POBJ) and Determinants (DET)) with
high fidelity. Vig and Belinkov (2019) also ex-
plored the dependency relations across heads and
discovered that initial layers typically encode posi-
tional relations, middle layers capture the most de-
pendency relations, and later layers look for unique
patterns and structures. These insights are exposed
interactively through EXBERT.

3 Overview

EXBERT focuses on displaying a succinct view of
both the attention and the internal representations
of each token. Figure 1 shows an overview of the
tool’s two main components. The Attention View
provides an interactive view of the self-attention of
the model, where users can change layers, select
heads, and view the aggregated attention. The Cor-
pus View presents a user with aggregate statistics
that aim to describe and summarize the hidden rep-
resentations of a currently selected token or set of
attention heads. For simplicity, the tool defaults to
focus on single-sentence examples.

3.1 Attention View

The attention A can be understood as an adjacency
matrix, which is conducive to a representation of
curves pointing from each token to every other
token. However, since A is not symmetric, a visu-
alization has to separate the outgoing and incoming
attention of a token. We achieve this by duplicat-
ing the tokens of input Y and presenting it in two

vertical sections, connected through the attention.
Hovering over a token will reduce the displayed

attention graph to the incoming/outgoing attention
of that token. We display the top predictions of the
model at that position. Clicking on a token freezes
the filtered attention view.

Many models introduce special tokens (e.g.,
“[CLS]”, “<|endoftext|>”) for downstream classi-
fication or generation tasks. These tokens often
receive very high attention and act as a null oper-
ation (Clark et al., 2019). We provide a switch to
hide the special tokens of the model and renormal-
ize based on the other attentions to provide easier
visualization of subtle attention patterns.

3.2 Corpus View

Representations, on the other hand, cannot be eas-
ily visualized footnoteSee Strobelt et al. (2017) for
a discussion why heat-maps are not an appropriate
visualization of hidden states. but they can be un-
derstood by searching for similar representations
in an annotated corpus. The results of this search
are presented in the Corpus View with the highest-
similarity matches shown first. The histograms
display the accumulated features of the matched
representations and the token that receives the most
attention.

Searching Inspired by Strobelt et al. (2017,
2018), EXBERT performs a nearest neighbor
search of embeddings on a reference corpus as
follows. A corpus is first split by sentence and
its tokens labeled for desired metadata (e.g., POS,
DEP, NER). The model then processes this corpus,
and its embeddings E(l) are stored at every layer
l and indexed for a Cosine Similarity (CS) search
using faiss (Johnson et al., 2019). The top 50 most
similar tokens matching a query embedding are dis-
played and summarized for the user in the context
of their use in the annotated corpus.

To supplement the layer embeddings E(l) and
enable exploration of the attention heads, we derive
a Context Embedding C(l), which we define as the
concatenation of heads before the linear projection
at the layer’s output. Formally, this is defined as:

C(l) = Concat(h̃
(l,1)

, . . . , h̃
(l,n)

),

where h̃
(l,i)

is defined as the L2 normalized rep-
resentation of head i at layer l to enable CS search-
ing by head. To search the corpus for any subset of
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heads Hs ⊆ {1, . . . , n}, we set all values of h̃
(l,i)

to 0 in C l, where i /∈ Hs.

Bidirectional vs. Autoregressive Behavior
EXBERT is flexible to accommodate both bidi-
rectional and autoregressive Transformer architec-
tures, but the tool behaves slightly differently for
each. Bidirectional models have histogram sum-
maries for the nearest neighbor matches across the
corpus and allow interactive MASKing of tokens.
When hovering over any token, the interface will
show what the language model would predict at
that token.

Autoregressive models will also search for the
nearest neighbors to a selected token’s embedding,
but the interface will instead summarize the meta-
data of the following token (indicated in red font).
Hovering over any token in the Attention View
will display what the model would predict next.

3.3 Extending EXBERT

EXBERT runs Huggingface’s unified API for
Transformer models (Wolf et al., 2019) which al-
lows any Transformer model from that API to take
full advantage of the Attention View.

Similarity searching requires the user to first an-
notate a corpus with the desired model. Scripts to
aid annotation of a corpus from a custom model is
provided in the code repository.2

To display metadata from a corpus in a cus-
tom domain, users will need to align the trans-
former model’s tokenization scheme to extracted
metadata (e.g., DNA Sequences and their proper-
ties). EXBERT accomplishes this by first tokeniz-
ing, normalizing, and labeling the sentence with
spaCy (Honnibal and Montani, 2017). If these
tokens are split further by the Transformer’s to-
kenization scheme, each word-piece receives the
metadata of its parent token. Note that special
tokens like “[CLS]” and “<|endoftext|>” have no
linguistic features assigned to them.

4 Case Study: BERT

Clark et al. (2019) performed an extensive analysis
to determine which heads in a base sized BERT
Transformer model learned which dependencies.
We show here how some of their insights are eas-
ily accessible through the EXBERT interface (De-
vlin et al., 2019) for the case-sensitive BERT-base
model, which has 12 layers and 12 heads per layer.

2https://github.com/bhoov/exbert.

Figure 2: Exploration of different attention heads for
pretrained model BERTbase and different corpora. (a)
shows head 5-3 expecting looks at the presents of an
auxiliary verb (AUX) to predict that the MASK should
be a verb. Head 7-5 in (b) shows a head that has learned
to attend to Objects of the Preposition (POBJ). Finally,
(c) shows Head 5-5 learning correct co-reference.

We use the notation <layer>-<head> to refer to a
single head at a single layer, and <layer>-[<heads>]
to describe the cumulative attention of heads at a
layer (e.g., 4-[1,3,9] to describe the aggregated at-
tention of heads 1, 3, and 9 at layer 4).

4.1 Behind the Heads

Figure 2 shows examples where distinct heads learn
evident linguistic features. Figure 2a shows that
the MASKed verb “escape” points to the auxiliary
verb (AUX) “to”. If we search over the annotated
Wizard of Oz3, we see that the tokens matching
the MASK’s most similar contexts at Head 5-3 are
verbs and that the attention out of these matched
words goes primarily to an AUX dependency.

Figure 2b shows that Head 7-5 finds relation-
ships between prepositions (PREP) and their ob-
jects (POBJ) in the input sentence. By searching
for the token “in” across a subset of the “Wikipedia”
corpus (Merity et al., 2016), we confirm that many

3http://www.gutenberg.org/ebooks/55

https://github.com/bhoov/exbert
http://www.gutenberg.org/ebooks/55
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Figure 3: A progression of the information encoded by a nearest neighbor embedding (left) and context (right)
searches for the MASKed token “escape” in Figure 2a and the sentence, “The girl ran to a local pub to escape the
din of her city.” Note that heads encode verb information (dark green) significantly earlier than the embeddings.

other annotated sentences exhibit this pattern.
Figure 2c seemingly finds a head that determines

co-reference to entity relationships, as both “she”
and “her” are pointing strongly at “Kim” and little
to everything else. Because the parse tree is absent
in the annotated corpus, we are unable to search for
co-reference patterns. However, the corpus search
does reveal that this head learns to match pronouns
to Entities rather than common gendered words
such as “woman” or “mother”.

4.2 Behind the Mask

Earlier layers of a BERT model can capture partic-
ular linguistic information (Clark et al., 2019; Vig
and Belinkov, 2019). We now explore this behavior
for a MASKed token across layers. We look at the
following sentence, also shown in Figure 2a:

The girl ran to a local pub to escape the din of
her city.

We begin by masking the “escape” token in the
example sentence at layer 1 and search what infor-
mation is behind the “[MASK]” token’s embedding
(Figure 1). Note that at this early layer, there is
no meaningful linguistic information encoded in a
MASK token’s embedding, and the matching em-
beddings are most similar to punctuation (PUNCT)
and determinants (DET), which are the most com-
mon tokens in English (Figure 1f). Additionally,
the maximum attention out of the MASKed token
points to itself (Figure 1c).

As layers progress, more VERB information is
encoded in the token’s embedding, as shown in
Figure 3. At layer 6, the model does not relate the
MASKed word to verbs, but by layer 9 it is con-
vinced that the MASK should be a verb. Note that
accumulated head information confidently captured
a “verb” pattern in a significantly earlier layer.

5 Case Study: GPT-2

5.1 Gender Bias

We now use EXBERT to explore the problem
of gender bias and co-reference in autoregressive
Transformers (Zhao et al., 2018), a problem in-
herent in the training data that infects the model’s
understanding of language (Font and Costa-jussà,
2019). Take the following sentence:

The man visited the nurse and told him to attend
to his patients.

We aim to detect whether the model thinks
“nurse” is male or female before it sees the mascu-
line pronoun “him” referring to “nurse”. Because
GPT-2 is trained to predict the next word, we can
do this by selecting the token “told” and hovering
over it to see the prediction of that pronoun. These
results are shown in Figure 4a, and from the proba-
bilities, we can see that GPT-2 predicts “her” with
90% probability. The next closest token “him” is
only 6%. Figure 4b shows that replacing “nurse”
with “doctor” alters the prediction to be strongly in
favor of predicting “him” at 68% probability, while
“her” falls to 18%. The attention patterns in the
final three layers remain ostensibly the same for
both sentences.

5.2 Heads up

In contrast to BERT, GPT-2 is an autoregressive
language model. This makes it more difficult to
detect some dependencies by looking at attention
patterns (e.g., PREP looking for its POBJ in the fu-
ture). However, EXBERT can offer similar insights
as above using slightly altered methods. The fol-
lowing experiments use the smaller configuration
of GPT-2 with 12 layers and 12 heads (Radford
et al., 2019).

Exploring the heads in GPT-2 reveals that GPT-
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Figure 4: Highlights the bias of the GPT-2 model for generation. (a) “nurse” prompts the model to predict “her”.
(b) shows “doctor” causing the model to predict “him”

Figure 5: Discovering simple head patterns in GPT-
2 using the sentence. (a) shows strong detection of
the AUX dependency. (b) shows a head detecting the
DOBJ dependency

2’s heads also learn distinct syntactic structure. Fig-
ure 5a shows a few heads at different layers that
seemingly learn the AUX dependency. Heads at
earlier layers show an affinity for the AUX pat-
tern, but also confuse “to” with a preposition even
though a verb directly follows. This behavior hints
that these heads look primarily to match the word
“to” rather than its contextual meaning.

Similarly, Figure 5b shows a head that attends
predominantly to a preceding verb and matches
contexts in which the following word is a DOBJ. In-
terestingly, the more complex DOBJ dependency is
picked up by a head as early as layer 5-12, whereas
a simpler dependency like the AUX pattern is only
clearly detected later in Layer 8.

6 Discussion

In this paper, we introduced an interactive visualiza-
tion tool, EXBERT, that can reveal an intelligible
structure in the learned representations of Trans-
former models. We demonstrated, through an atten-
tion visualization and nearest neighbor searching
techniques, that EXBERT can replicate research
that explores what attentions and representations
learn and detect biases in text inputs.

We acknowledge that EXBERT is limited com-
pared to more global analyses since it only presents
statistics across a small number of neighbors for a
single token at a time. These neighbors do not nec-
essarily reveal a head’s or an embedding’s global
behavior. However, EXBERT can effectively nar-
row the scope and refine hypotheses through quick
testing iterations. These hypotheses about the
model behavior can, in a later step, be evaluated by
robust statistical tests on a global level.

To assist researchers with their model investi-
gations, we host a demo of the tool with multiple
models at exbert.net.

exbert.net
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A Recreating the experiments

We allow direct linking to an experimental setup in
the interface. A list of the links to reproduce our
results is given below (all links in the supplemen-
tary material are correct at the time of publishing,
but may be changed in the distant future):

• Overview (Figure 1):
https://bit.ly/2OfD6Vt

• Behind the Heads (Figure 2)

– (a): https://bit.ly/2GJUihs
– (b): https://bit.ly/38Ycss8
– (c): https://bit.ly/2S8qGzO

• Behind the Mask (Figure 3):
https://bit.ly/2RJ952n

• GPT-2 Bias (Figure 4):
https://bit.ly/36ELwMo

• Heads Up (Figure 5):

– (a): https://bit.ly/2vAcgRe
– (b): https://bit.ly/2S9qHDs

B Additional Material

In addition to the content presented in the main pa-
per, we have recorded a short video demo showing
how to use the tool to probe for particular patterns
at https://youtu.be/e31oyfo_thY.

A Lite version of the tool, without the corpus
searching, demoing many common Transformer
models is hosted by Huggingface at huggingface.
co/exbert.

https://bit.ly/2OfD6Vt
https://bit.ly/2GJUihs
https://bit.ly/38Ycss8
https://bit.ly/2S8qGzO
https://bit.ly/2RJ952n
https://bit.ly/36ELwMo
https://bit.ly/2vAcgRe
https://bit.ly/2S9qHDs
https://youtu.be/e31oyfo_thY
huggingface.co/exbert
huggingface.co/exbert
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C Additional figures

Figure 6: The most similar embeddings, in context, to the MASKed token “escape” in the sentence: “The girl ran
to a local pub to escape the din of her city” at the output of layer 12 of BERTbase (shown in Figure 2a). Corpus
results are annotated excerpts from the Wizard of Oz. Notice how at the output layer all attentions are primarily
to the word itself or the final punctuation mark of the sentence, indicating that the most important information is
likely already encoded in the selected token’s embedding.


