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Abstract
Recently, BERT has become an essential in-
gredient of various NLP deep models due to
its effectiveness and universal-usability. How-
ever, the online deployment of BERT is of-
ten blocked by its large-scale parameters and
high computational cost. There are plenty of
studies showing that the knowledge distilla-
tion is efficient in transferring the knowledge
from BERT into the model with a smaller size
of parameters. Nevertheless, current BERT
distillation approaches mainly focus on task-
specified distillation, such methodologies lead
to the loss of the general semantic knowl-
edge of BERT for universal-usability. In this
paper, we propose a sentence representation
approximating oriented distillation framework
that can distill the pre-trained BERT into a
simple LSTM based model without specify-
ing tasks. Consistent with BERT, our dis-
tilled model is able to perform transfer learn-
ing via fine-tuning to adapt to any sentence-
level downstream task. Besides, our model can
further cooperate with task-specific distillation
procedures. The experimental results on mul-
tiple NLP tasks from the GLUE benchmark
show that our approach outperforms other task-
specific distillation methods or even much
larger models, i.e., ELMO, with efficiency
well-improved.

1 Introduction

As one of the most important progress in the Natu-
ral Language Processing field recently, the Bidirec-
tional Encoder Representation from Transformers
(BERT) (Devlin et al., 2019) has been proved to
be effective in improving the performances of vari-
ous NLP tasks by providing a powerful pre-trained
language model based on large-scale unlabeled cor-
pora. Recent studies have shown that BERT’s capa-
bility can be further enhanced by utilizing deeper ar-
chitectures or performing the pre-training on larger
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corpora with appropriate guidance (Radford et al.,
2019; Yang et al., 2019; Liu et al., 2019b).

Despite its strength in building distributed se-
mantic representations of sentences and supporting
various NLP tasks, BERT holds a huge amount of
parameters that raises the difficulty of conducting
online deployment due to its unsatisfying compu-
tational efficiency. To address this issue, various
studies have been done to utilize the knowledge
distillation (Hinton et al., 2015) for compressing
BERT and meanwhile keep its semantic model-
ing capability as much as possible (Chia et al.,
2019; Tsai et al., 2019). The distilling methodolo-
gies include simulating BERT with a much smaller
model (e.g., LSTM) (Tang et al., 2019b) and re-
ducing some of the components, such as transform-
ers, attentions to obtain the smaller BERT based
model (Sun et al., 2019; Barkan et al., 2019).

Nevertheless, the current methods highly rely
on a labeled dataset upon a specified task. Firstly,
BERT is fine-tuned on the specified task to get
the teaching signal for distillation, and the stu-
dent model with simpler architectures attempts
to fit the task-specified fine-tuned BERT after-
ward. Such methodologies can achieve satisfying
results by capturing the task-specified biases (Mc-
Callum and Nigam, 1999; Godbole et al., 2018;
Min et al., 2019), which are inherited by the
tuned BERT (Niven and Kao, 2019; McCoy et al.,
2019). Unfortunately, the powerful generalization
nature of BERT tends to be lost. Apparently, dis-
tilling BERT’s original motivation is to obtain a
lightweight substitution of BERT for online imple-
mentations, and BERT’s general semantic knowl-
edge, which plays a significant role in some NLP
tasks like sentence similarity quantification, is ex-
pected to be maintained accordingly. Meanwhile,
for many NLP tasks, manual labeling is quite a
high-cost work, and large amounts of annotated
data can not be guaranteed to obtain. Thus, it
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is of great necessity to compress BERT with the
non-task-specific training procedure on unlabeled
datasets.

For achieving the Non-task-specific Distillation
from BERT, this paper proposes a distillation loss
function to approximate sentence representations
by minimizing the cosine distance between the sen-
tence representation given by the student network
and the one from BERT. As a result, a student net-
work with a much smaller scale of parameters is
produced. Since the distilling strategy purely fo-
cuses on the simulation of sentence embeddings
from BERT, which is not directly related to any spe-
cific NLP task, the whole training procedure takes
only a large amount of sentences without any man-
ual labeling work. Similar to BERT, the smaller
student network can also perform transfer learn-
ing to any sentence-level downstream tasks, such
as text classification and sentence matching. The
proposed methodology is evaluated on the open
platform of General Language Understanding Eval-
uation (GLUE) (Wang et al., 2019), including the
Single Sentence (SST-2), Similarity and Paraphrase
(QQP and MRPC), and Natural Language Infer-
ence (MNLI) tasks. The experimental results show
that our proposed model outperforms the models
distilled from a BERT fine-tuned on a specific task.
Moreover, our model inferences more efficiently
than other transformer-based distilled models.

2 Related Works

With the propose of ELMo (Peters et al., 2018),
various studies take the representation given by pre-
trained language models as additional features to
improve the performances. Howard and Ruder
(2018) propose Universal Language Model Fine-
tuning (ULMFiT), an effective transfer learning
method that can be applied to any NLP task and
accordingly, using pre-trained language models in
downstream tasks became one of the most exciting
directions. On this basis, developing with deeper
network design and more effective training meth-
ods, pre-trained models’ performances improved
continuously (Devlin et al., 2019; Radford et al.,
2019; Yang et al., 2019; Liu et al., 2019b). Since
the release of BERT (Devlin et al., 2019), the state-
of-the-art (SOTA) results on 11 NLP tasks have
been produced consequently.

With the improvement in performances, the com-
puting cost increases, and the inference procedure
becomes slower accordingly. Thus, various stud-

ies focused on the model compression upon BERT.
Among the most common model compression tech-
niques, the knowledge distillation (Hinton et al.,
2015) has been proven to be efficient in transfer-
ring the knowledge from large-scaled pre-trained
language models into another one (Liu et al., 2019a;
Wang et al., 2020; Jiao et al., 2019; Sun et al., 2020).
With the help of proposed distillation loss, Sun
et al. (2019) compressed BERT into fewer layers
by shortening the distance of internal representa-
tions between student and teacher BERTs. For
the sentence-pair modeling, Barkan et al. (2019)
found the cross-attention function across sentences
is consuming and tried to remove it with distillation
on sentence-pair tasks. Different from these stud-
ies distilling BERT into transformer-based mod-
els, Chia et al. (2019) proposed convolutional stu-
dent architecture to distill GPT for efficient text
classification. Moreover, focusing on the sequence
labeling tasks, (Tsai et al., 2019) derived a BiLSTM
or MiniBERT from BERT via standard distillation
procedure to simulate the prediction on each token.
Besides, Tang et al. (2019a,b) proposed to distill
BERT into a BiLSTM based model with penaliz-
ing the mean square error between the student’s
logits and the ones given by BERT as the objec-
tive on specific tasks, and introduced various data
augmentation methods during distillation.

3 Method

As introduced in Section 1, our proposed method
consists of two procedures. Firstly, we distill BERT
into a smaller student model via approximating the
representation of sentences given by BERT. After-
ward, similar to BERT, the student model can be
fine-tuned on any sentence-level task, such as text
classification and sentence matching.

3.1 Distillation Procedure

Suppose x = {w1, w2, · · · , wi, · · ·wn|i ∈ [1, n]}
stands for a sentence containing n tokens (wi is the
i-th token of x), and let T : x → Tx ∈ Rd be the
teacher model which encodes x into d-dimensional
sentence embedding Tx, the goal of the sentence
approximation oriented distillation is to train a stu-
dent model S : x→ Sx ∈ Rd generating Sx as the
approximation of Tx.

In our proposed distillation architecture, as
shown in Figure 1a, we take the BERT as the
teacher model T , and the hidden representation
C is extracted from the top transformer layer upon
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Figure 1: The illustration of the proposed BERT distillation architecture including the distilling and tuning pro-
cedures. Sub-figure (a) demonstrates the distillation procedure taking BERT as the teacher model and BiLSTM
as the student model, with the objective of approximating the sentence representations given by BERT. (b) and
(c) show two types of fine-tuning frameworks, in which (b) addresses the sentence classification task with the sin-
gle sentence as the input, and (c) goes for the sentence-pair-oriented tasks, i.e., sentence similarity quantification,
natural language inference.

the [CLS]1 token as Tx. For the student model, a
standard bidirectional LSTM (BiLSTM) is first em-
ployed to encode the sentence into a fixed-size vec-
tor H . After that, a fully connected layer without
bias terms is built upon the BiLSTM layer to map
H into a d-dimensional representation, followed
by a tanh activation that normalizes the values of
previous representation between -1 and 1 as the
final Sx.

As our non-task-specific distillation task has no
labeling data, and the signal given by the teacher is
a real value vector, it is not feasible to minimize the
cross-entropy loss over the soft labels and ground
truth labels (Sun et al., 2019; Barkan et al., 2019;
Tang et al., 2019b). On this basis, we propose an ad-
justed cosine similarity between the two real value
vectors Tx and Sx to perform the sentence repre-
sentation approximation. Our distillation objective
is computed as follows:

Ldistill =
1

2
(1− Tx · Sx

‖Tx‖‖Sx‖
) (1)

Here tanh is chosen as the activation function since
most values (more than 98% according to our stat-
ics) in Tx obtained from BERT are within range of
tanh (-1 to 1). The choice of using cosine similar-
ity based loss is mainly based on the following two
considerations. Firstly, since 2% values in Tx are
outside the range of [-1, 1], it is more reasonable

1[CLS] is a special symbol added in front of other tokens
in BERT, and the final hidden state corresponding to this token
is usually used as the aggregate sequence representation.

to use a scalable measurement, such as cosine sim-
ilarity, to deal with these deviations. Secondly, it
is meaningful to compute the cosine similarity be-
tween sentence embeddings given by BERT (Xiao,
2018).

Overall, after the distillation procedure, we ob-
tained a BiLSTM based “BERT”, which is smaller
in parameter scale and more efficient in generating
a sentence’s semantic representation.

Distilling data As our distillation procedure needs
no dependency on sentence type or labeling re-
sources but only standard sentences available ev-
erywhere, the distillation data selection follows the
existing literature on language model pre-training
as well as BERT. We use the English Wikipedia
to perform the distillation. Furthermore, as the
proposed method focus on the sentence represen-
tation approximation, the document is segmented
into sentences using spacy (Honnibal and Montani,
2017).

3.2 Fine-tuning the Student Model
The fine-tuning on sentence-level tasks is straight-
forward. The downstream tasks discussed in this
paper can be summarized as type judgment on a
single sentence and predicting the relationship be-
tween two sentences (same as all GLUE tasks). Fig-
ure 1b illustrates the model architecture for single
sentence classification tasks. The student model S
is utilized to provide sentence representation. After
that, a multilayer perceptron (MLP) based classifier
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using Relu as activation of hidden layers is applied
for the specific task. For the sentence pair tasks,
as shown in Figure 1c, the representations H and
H̃ for the sentence pair are obtained by transform-
ing two sentences into two BiLSTM based student
models with shared weights respectively. Then,
following the baseline BiLSTM model reported by
GLUE (Wang et al., 2019), we apply a standard
concatenate-compare operation between the two
sentence embeddings and get an interactive vector
as [H, H̃, |H − H̃|, H � H̃], where the � demotes
for the element-wise multiplication. Then, same as
the single sentence task, an MLP based classifier is
built upon the interactive representation.

For both types of tasks, MLP layers are initial-
ized randomly, and the rest parameters are inherited
from the distilled student model. Meanwhile, all
parameters are optimized through the training pro-
cedure for the specific task.

4 Experimental Setups

4.1 Datasets & Evaluation Tasks
To evaluate the performance of our proposed
non-task-specific distilling method, we conduct
experiments on three types of sentence-level
tasks: sentiment classification (SST-2), similar-
ity (QQP, MRPC), and natural language inference
(MNLI). All the tasks come from the GLUE bench-
mark (Wang et al., 2019).

SST-2 Based on the Stanford Sentiment Treebank
dataset (Socher et al., 2013), the SST-2 task is to
predict the binary sentiment of a given single sen-
tence. The dataset contains 64k sentences for train-
ing and remains 1k for testing.

QQP The Quora Question Pairs2 dataset consists
of pairs of questions, and the corresponding task
is to determine whether each pair is semantically
equivalent.

MNLI The Multi-Genre Language Inference Cor-
pus (Williams et al., 2018) is a crowdsourced col-
lection of sentence pairs with textual entailment
annotations. There are two sections of the test
dataset: matched (in-domain, noted as MNLI-m)
and mismatched (cross-domain, noted as MNLI-
mm).

MRPC The Microsoft Research Paraphrase Cor-
pus (Dolan and Brockett, 2005) is similar to the

2https://www.quora.com/q/quoradata/
First-Quora-Dataset-Release-Question-Pairs

QQP dataset. This dataset consists of sentence
pairs with binary labels denoting their semantic
equivalence.

4.2 Model Variations
BERT (Devlin et al., 2019) with two variants:
BERTBASE and BERTLARGE, containing 12 and 24
layers of Transformer respectively.

ELMO Baseline (Wang et al., 2019) is a BiL-
STM based model, taking ELMo (Peters et al.,
2018) embeddings in place of word embeddings.

BERT-PKD (Sun et al., 2019) proposes a patient
knowledge distillation approach to compress BERT
into a BERT with fewer layers. BERT3-PKD and
BERT6-PKD stand for the student models consist-
ing of 3 and 6 layers of Transformer, respectively.

DSE (Barkan et al., 2019) is a sentence embed-
ding model based on knowledge distillation from
cross-attentive models. For each single sentence
modeling, the 24-layers BERT is employed.

BiLSTMKD (Tang et al., 2019b) introduces a
new distillation objective to distill a BiLSTM
based model from BERT for a specific task.
BiLSTMKD+TS (Tang et al., 2019a) donates the
distilling procedure performed with the proposed
data augmentation strategies.

BiLSTMSRA stands for the Sentence Representa-
tion Approximation based distillation model pro-
posed in this paper. BiLSTMSRA + KD donates per-
forming knowledge distillation method proposed
by Tang et al. (2019b) during fine-tuning on a spe-
cific task, and BiLSTMSRA + KD+TS demonstrates
using the same augmented dataset to perform the
distillation.

4.3 Hyperparameters
For the student model in our proposed distilling
method, we employ the 300-dimension GloVe
(840B Common Crawl version; Pennington et al.,
2014) to initialize the word embeddings. The num-
ber of hidden units for the bi-directional LSTM
is set to 512, and the size of the task-specific lay-
ers is set to 256. All the models are optimized
using Adam (Kingma and Ba, 2015). In the dis-
tilling procedure, we choose the learning rate as
1 × 10−3 with the batch size=1024. During fine-
tuning, the best learning rate on the validation set
is picked from {2, 3, 5, 10} × 10−4. For the data

https://www.quora.com/q/quoradata/First-Quora-Dataset-Release-Question-Pairs
https://www.quora.com/q/quoradata/First-Quora-Dataset-Release-Question-Pairs
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# Models
SST-2 QQP MNLI-m/mm MRPC

Acc F1/Acc Acc F1/Acc

1 BiLSTM (report by GLUE) 85.9 61.4 / 81.7 70.3 / 70.8 79.4 / 69.3
2 BiLSTM (report by Tang et al. (2019b)) 86.7 63.7 / 86.2 68.7 / 68.3 80.9 / 69.4
3 BiLSTM (our implementation) 84.5 60.3 / 81.6 70.8 / 69.4 80.2 / 69.7
4 ELMO Baseline (Wang et al., 2019) 90.2 65.6 / 85.7 72.9 / 73.4 84.9 / 78.0
5 BERTBASE (Devlin et al., 2019) 93.5 71.2 / 89.2 84.6 / 83.4 88.9 / 84.8
6 BERTLARGE (Devlin et al., 2019) 94.9 72.1 / 89.3 86.7 / 85.9 89.3 / 85.4
7 DSE (Barkan et al., 2019) - 68.5 / 86.9 80.9 / 80.4 86.7 / 80.7
8 BERT6-PKD (Sun et al., 2019) 92.0 70.7 / 88.9 81.5 / 81.0 85.0 / 79.9
9 BERT3-PKD (Sun et al., 2019) 87.5 68.1 / 87.8 76.7 / 76.3 80.7 / 72.5
10 BiLSTMKD (Tang et al., 2019a) 88.4 - / - - / - 78.0 / 69.7
11 BiLSTMSRA (Ours) 90.0 64.4 / 86.2 72.6 / 72.5 83.1 / 75.1
12 BiLSTMSRA + KD 90.2 67.7 / 87.8 72.3 / 72.0 80.2 / 72.8
13 BiLSTMKD+TS (Tang et al., 2019b) 90.7 68.2 / 88.1 73.0 / 72.6 82.4 / 76.1
14 BiLSTMSRA + KD+TS 91.1 68.4 / 88.6 73.0 / 72.9 83.8 / 76.2

Improvements obtained by performing different knowledge distillations
15 PKD (Sun et al., 2019) +1.1 +2.3 / +0.9 +1.9 / +2.0 +0.2 / -0.1
16 KD (Tang et al., 2019a) +1.7 - / - - / - -2.9 / +0.3
17 SRA(Ours) +5.5 +4.1 / +4.6 +1.8 / +3.1 +2.9 / +5.4
18 SRA(Ours)+KD +5.7 +7.4 / +6.2 +1.5 / +2.6 0. / +3.1
19 KD+TS (Tang et al., 2019a) +4.0 +4.5 / +1.9 +4.3 / +4.2 +1.5 / +6.7
20 SRA(Ours)+KD+TS +6.6 +8.1 / +7.0 +2.2 / +3.5 +3.6 / +6.5

Table 1: Evaluation results with scores given by the official evaluation server3.

augmentation, we use the rule-based method orig-
inally suggested by Tang et al. (2019b). Notably,
on the SST-2 and MRPC dataset, we stop data
augmenting when the transfer set achieves 800K
samples following the setting of their follow-up
research (Tang et al., 2019a). Besides, inspired
by the comparisons in the research of Sun et al.
(2019), we find BERTBASE can provide more in-
structive representations than BERTLARGE. So that,
we chose BERTBASE as our teacher model to train
the non-task-specified BiLSTMSRA.

5 Results and Analysis

5.1 Model Performance Analysis

For a comprehensive experiment analysis, we col-
lect data and implement comparative experiments
on various published BERT and BERT-distillation
methods. Table 1 shows the results of our proposed
BiLSTMSRA and the baselines on the four datasets.
All models in the first block (row 1-6) belong to
base methods without implementing distillation,
the second (row 7-9) and third (row 10-12) blocks

3https://gluebenchmark.com/leaderboard

show the performances of distillation models using
BERT and BiLSTM structures, respectively. More-
over, the fourth block (row 13-14) displays the
influences of textual data augmentation approach
on our BiLSTMSRA and BiLSTMKD distillation
baseline. The last two blocks contain the results
of pure improvements obtained by different dis-
tillation methods. To analyze the effectiveness of
BiLSTMSRA thoroughly, we break down the analy-
ses into the following two perspectives.

5.1.1 Comparison Between Models

Taking those non-distillation methods in the
first block as references, BiLSTMSRA performs
on par with ELMO on all tasks. Especially,
BiLSTMSRA + KD+TS outperforms the ELMO base-
line by approximately 3% on QQP and 1% on SST-
2 (row 14 vs 4). Such fact shows our compressed
“BERT” can provide as good pre-trained represen-
tations as ELMO on the sentence-level tasks.

For those distillation methods, both our model
and BiLSTMKD distill knowledge from BERT into
a simple BiLSTM based model, while BERT-PKD
focuses on distilling with the BERT of fewer lay-

https://gluebenchmark.com/leaderboard
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ers. Despite the powerful BERT based student
model and large-scale parameters used by BERT-
PKD, our proposed BiLSTMSRA still outperforms
BERT3-PKD on SST-2 and MRPC dataset (row 12
vs. 9). For BiLSTMKD, it proposes a rule-based tex-
tual data augmentation approach (noted as TS) to
construct transfer sets for the task-specific knowl-
edge distillation. We also employ such method
upon BiLSTMSRA + KD. With and without the data
augmentation, BiLSTMSRA consistently outper-
forms BiLSTMKD on all tasks (row 12 vs 10; row
14 vs 13). Coworking with the standard knowl-
edge distillation and data augmentation methods,
our proposed model is sufficient to distill semantic
representation modeled from pre-training tasks as
well as the task-specific knowledge included in a
fine-tuned BERT.

Besides, DSE’s overall architecture is simi-
lar to our method for modeling the sentence
matching task, except DSE does not reduce
the parameter size because it employs the pre-
trained BERTLARGE to give sentence representa-
tions. Thus, on the sentence-pair level tasks, DSE
somehow is an upper bound of the distilled models
without utilizing any cross attention to model the
two sentences’ interaction. Comparing with DSE
achieved an averaged 80.7 score on all sentence-
pair level tasks, BiLSTMSRA + KD+TS can also ob-
tain 77.2 that only 3.5 points lower (row 7 vs. 14).
Analyzing from this fact, our proposed model has
distilled a much smaller “BERT” with acceptable
performances.

5.1.2 Distillation Effectiveness

Because in each paper, the performances of student
models used for distillation vary from each other.
To further evaluate the distillation effectiveness, we
also report each distillation method’s improvement
upon the corresponding student directly trained
without distillation (in row 15-20). It can be ob-
served that SRA improves the scores by over 3.9%
on average, while PKD and KD only provide less
than 1.2% increase (row 17/16 vs. 15).

Since our distillation method is unrelated to
specific tasks, KD can also be performed upon
BiLSTMSRA during fine-tuning on a given dataset.
This operation provides a notable boost on the QQP
task, but damages the performance on both MNLI
and MRPC datasets (row 17 vs. 18). We attribute
these differences to the following aspects: a) the
QQP dataset has more obvious task-specified bi-

Models # of Par. Inference Time

BERTLARGE 309 (64x) 1461.9 (54.4x)
BERTBASE 87 (18x) 479.7 (17.7x)
ELMO 93 (19x) - (23.7x)
BERT3-PKD 21 (4x) - (4.8x)
BERT6-PKD 42 (9x) - (9.2x)
DSE 309 (64x) - (109.1x)
BiLSTMKD 2.4 (0.5x) 31.9 (1.2x)
BiLSTMSRA 4.8 (1x) 26.8 (1x)

Table 2: Comparisons of model size and inference
speed. # of Par. denotes the number of millions of
parameters, and the inference time is in seconds. The
factors inside the brackets are computed comparing to
our proposed model.

ases during the sampling process4. A pre-trained
BERT can not learn such biases; b) a fine-tuned
BERT on the MNLI can not further provide more
easy-to-use information to guide the student train-
ing after performing SRA; c) MRPC does not in-
clude enough data to complete KD, which is also
indicated by the decreased F1 score shown in row
16 in Table 1. These phenomena reflect that the
pre-distillation without paying attention to a spe-
cific task can help to learn more useful semantic
information from the teacher model.

Different from obtaining the best results on the
MNLI dataset, SRA+KD+TS brings few improve-
ments compared to KS+TS (row 19 vs. 20). We
attribute this to the difference in the results of pure
student BiLSTM between our implementation and
the one of Tang et al. (2019b), though our scores
are more constant with the baselines given by the
GLUE benchmark (Wang et al., 2019).

5.2 Model Efficiency Analysis

To compare the inference speeds of different mod-
els, we also implement experiments on 100k sam-
ples from the QQP dataset. The results are shown
in Table 2. All the inference procedures are per-
formed on a single P40 GPU with a batch size
of 1024, respectively. As the inference time is
affected by the test machine’s computing power,
for fair comparisons with ELMO, BERT3-PKD,
BERT6-PKD, and DSE, we inherit the speed-up
factors from previous papers. Besides, the numbers
of parameters reported in Table 2 exclude those

4https://www.kaggle.com/c/
quora-question-pairs/discussion/32819#
latest-189493

https://www.kaggle.com/c/quora-question-pairs/discussion/32819#latest-189493
https://www.kaggle.com/c/quora-question-pairs/discussion/32819#latest-189493
https://www.kaggle.com/c/quora-question-pairs/discussion/32819#latest-189493
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Models 20% 30% 50% 100%

BERTLARGE 91.9 92.5 93.5 93.7
BiLSTM 80.7 81.0 83.6 84.5
BiLSTMKD 81.9 83.2 84.8 86.3
BiLSTMSRA 85.9 87.3 88.1 89.2

Table 3: The accuracy scores evaluated on the SST-2
validation set. The models are trained with different
proportions of the training data.

from the embedding layers, since such components
do not affect the inference speed and are positively
related to the vocabulary sizes, i.e., usually few
words appeared for a specific task.

From the results shown in Table 2, it can be
observed that the BiLSTM based distilled mod-
els have fewer parameters than BERT, ELMO, as
well as the other transformer-based models. Com-
pared to the lightest model, both the BERTBASE
and ELMO are around 20 times larger in param-
eter size and 20 times slower in inference speed.
Even the smallest transformer based model BERT3-
PKD is also four times larger than our proposed
BiLSTMSRA. Comparing with BiLSTMKD, al-
though our proposed BiLSTMSRA is larger in pa-
rameter size due to the restriction of the sentence
embedding’s dimension given by the teacher BERT,
it stills inferences more efficiently. This is mainly
due to the fact that the more hidden units in
BiLSTMSRA are more accessible to calculated in
parallel by the GPU core, while the larger word
embedding size in BiLSTMKD slows down its in-
ference efficiency. In conclusion, the cost and pro-
duction per second of BiLSTMKD and BiLSTMSRA
are within the same scale, but our method achieves
better results on GLUE tasks according to the com-
parison shown in Table 1.

5.3 Influence of Task-specific Data Size

Since pre-trained language models have well-
initialized parameters and only learn a few param-
eters from scratch, these models usually converge
faster and are less dependent on large-scale an-
notations. Correspondingly, the non-task-specific
distillation method proposed in this paper also aims
to obtain a compressed pre-trained BERT and keep
these desirable properties. To evaluate it, in this sec-
tion, we discuss the influence of the task-specific
training data and learning iterations on the perfor-
mance of our model and the others.

As illustrated in Table 3, we experiment in train-
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Figure 2: Learning curve on the QQP dataset.

ing the models using different proportions of the
dataset. BERTLARGE trained on the correspond-
ing data stands for the teacher model of each
BiLSTMKD. No doubt, all the models can achieve
better results using more training data, while BERT
performs the best. BERT even successfully predicts
91.9% of validation samples under only 20% train-
ing data. Comparing with the pure BiLSTM mod-
els, the BiLSTMKD models slightly improve the
performances by 1%∼2%, whereas BiLSTMSRA
outperforms the best BiLSTM model as well as
the BiLSTMKD trained with 20% and 30% percent
data respectively. Besides, similar to BERT, the dif-
ference of accuracy between BiLSTMSRA trained
with 20% and the one using 100% corpus is rela-
tively small. This phenomenon indicates that our
model converges faster and is less dependent on
the amount of training data for downstream tasks.

Such conclusions are also reflected in the com-
parison in Figure 2 of the models’ learning curves
on QQP. Even though QQP is a large dataset to
train a good BiLSTM model, it can be observed that
BiLSTMSRA trained with 30% data performs equiv-
alent to BiLSTM using the whole corpus. More-
over, using 100% training data, BiLSTMSRA even
outperforms the converged BiLSTM after the first
epoch. Besides, all the BiLSTMSRA models con-
verge in much fewer epochs.

5.4 Influence of Distilling Data Size

Despite the task-specified data, Wikipedia corpus
is used in the distillation procedure of our proposed
method. We also pre-train different BiLSTMSRA
base models using {1, 2, 4}million Wikipedia data,
and the corresponding fine-tuning performances
on SST-2 and MNLI are reported in Table 4. It
can be observed that both the performances of
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Size
Distillation SST-2 MNLI-m

Loss Acc Acc

0M - 84.5 70.23
1M 0.0288 88.9 (+4.4) 72.01 (+1.78)
2M 0.0257 89.3 (+4.8) 72.09 (+1.86)
4M 0.0241 89.4 (+4.9) 72.45 (+2.22)

Table 4: The distillation losses on the Wikipedia vali-
dation set and the accuracy scores of the downstream
tasks various with the distillation data sizes.

BiLSTMSRA on SST-2 and MNLI are proportional
to the distillation loss. This observation indicates
the effectiveness of our proposed distillation pro-
cess and objective.

Besides, distilling with adequate data is suffi-
cient to produce more BERT-like sentence repre-
sentations as well as achieve better performance on
the downstream tasks. Nevertheless, different from
the fact that more training data has a significant
benefit in a particular task, four times the distilling
data can only improve around 0.5 points on both
SST-2 and MNLI-m tasks. Thus, our method does
not require a vast amount of training data and a
long training time to obtain good sentence repre-
sentations. Furthermore, the second column’s loss
scores suggest BiLSTMSRA can generate more than
95% similar sentence embeddings with the ones
given by BERT under the measure of the cosine
similarity.

5.5 Analysis on the Untuned Sentence
Representations

A notable characteristic of the pre-trained language
models, such as ELMO, BERT, and certainly the
non-task oriented distillation models, lies in the ca-
pability of providing sentence representations for
quantifying similarities of sentences, without any
tuning operation based on specific tasks. In this
subsection, we conduct the comparisons among
models by directly extracting their sentence embed-
dings without fine-tuning upon sentence similarity
oriented tasks.

Table 5 lists the results of models on the QQP
dataset. It should be noted that, in this table,
ELMO, BERTBASE (CLS) and BERTBASE (aver-
aged) are introduced as the comparison basis, since
they can give the SOTA untuned sentence repre-
sentations for the similarity measurement. The
comparison mainly focuses on the performances of

Models Acc F1

ELMO 65.1 64.4
BERTBASE (CLS) 63.9 61.0
BERTBASE (averaged) 66.4 64.1
BiLSTMKD 56.3 56.6
BiLSTMSRA 62.9 61.0

Table 5: Results of untuned sentence representing mod-
els on QQP dataset.

our proposed BiLSTMSRA and BiLSTMKD. For a
thorough comparison, we define the training objec-
tive of BiLSTMKD as fitting the cosine similarity
score of the sentence pair directly given by the pre-
trained BERTBASE , which means both the teacher
BERT and distilled models do not utilize the labels
of QQP dataset. Even though the training goal of
BiLSTMKD is more direct than BiLSTMSRA, it can
be seen that our BiLSTMSRA outperforms the for-
mer on the metrics. Furthermore, it achieves scores
closed to those of BERTBASE. Besides, we can also
observe that, for sentence similarity quantification,
averaging the context word embeddings as the sen-
tence representation (ELMO and BERTBASE (av-
eraged)) works better than taking the final hidden
state corresponding to the [CLS] token (BERTBASE
(CLS)).

6 Conclusions

In this paper, we have presented a sentence repre-
sentation approximating oriented method for dis-
tilling the pre-trained BERT model into a much
smaller BiLSTM without specifying tasks, so as to
inherit the general semantic knowledge of BERT
for better generalization and universal-usability.
The experiments conducted based on the GLUE
benchmark have shown that our proposed non-
task-specific distillation methodology can improve
the performances on multiple sentence-level down-
stream tasks. From the experimental results, the fol-
lowing conclusions can be drawn: 1) for a specified
task, our proposed distillation method can bring the
5% improvement to the pure BiLSTM model on
average; 2) the proposed model can outperform
the state-of-the-art BiLSTM based pre-trained lan-
guage model, which contains much more parame-
ters; 3) compared to the task-specific distillation,
our distilled model is less dependent on the cor-
pus size of the downstream task with satisfying
performances guaranteed.
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