
Proceedings of the 1st Conference of the Asia-Pacific Chapter of the Association for Computational Linguistics
and the 10th International Joint Conference on Natural Language Processing, pages 63–69

December 4 - 7, 2020. c©2020 Association for Computational Linguistics

63

Abstract

Large and complex models have recently

been developed that require many

parameters and much time to solve various

problems in natural language processing.

This paper explores an efficient way to

avoid models being too complicated and

ensure nearly equal performance to models

showing the state-of-the-art. We propose a

single convolutional neural network (CNN)

using the sinusoidal positional encoding

(SPE) in text classification. The SPE

provides useful position information of a

word and can construct a more efficient

model architecture than before in a CNN-

based approach. Our model can

significantly reduce the parameter size (at

least 67%) and training time (up to 85%)

while maintaining similar performance to

the CNN-based approach on multiple

benchmark datasets.

1 Introduction

In recent years, convolutional neural networks

(CNN) have shown remarkable performance and

time-efficiency in text classification tasks such as

sentiment analysis and document classification.

(Kim, 2014; Kalchbrenner et al., 2014; Zhang et

al., 2015). In particular, Kim (2014) shows the

importance of pre-trained word vectors and fine-

tuned word vectors for each task, currently being

used in many studies. However, in CNN,

convolution and pooling operations lose

information about the local order of words (Britz,

2015; Yenigalla et al., 2018). To solve this problem,

various studies have been conducted on model

architectures capable of effectively extracting

features from CNN (Kim, 2014; Kalchbrenner et

al., 2014; Zhang et al., 2015; Lai et al., 2015; Zhao

et al., 2018; Kim et al., 2020).

On the other hand, when using a word vector

based on a distributed representation, fine-tuning

of the pre-trained word vector for each task

requires more parameters in proportion to the

sequence length. Along with this, the proposed

large and complex model architectures have

improved performance, but additional space and

time costs are required due to numerous parameters

(Alom et al., 2019). Recently, studies have been

conducted on efficient model architectures with

less parameter size and computational cost without

significant performance loss compared to existing

models (Vaswani et al., 2017; Tay et al., 2019;

Zhang and Sennrich, 2019).

Vaswani et al. (2017) introduced sinusoidal

positional encoding (SPE) and multi-head self-

attention to introduce a simple model architecture

with less parameter size and computational cost

than before. The SPE provides useful word

position information without recurrent neural

networks (RNN) and, at the same time, requires

less parameter size. Due to these advantages,

studies have been conducted to show the

usefulness of location encoding in computer vision

and natural language processing (Takase and

Okazaki, 2019; Islam et al., 2020).

In this paper, we propose a single CNN with

SPE and construct a simpler model architecture

than before with useful position information. SPE's

position information is applied to the pre-trained

word vector, and it is maintained as a static vector

without fine-tuning. A single CNN extracts

significant features from word vectors containing

position information. The results of this study are

confirmed against six benchmark datasets. The

proposed model is challenging to achieve state-of-

the-art, but it maintained similar performance as

before, despite significantly reducing the

parameter size and time cost compared to the

previous CNN-based approaches.

Lightweight Text Classifier using Sinusoidal Positional Encoding

Byoung-Doo Oh and Yu-Seop Kim

Department of Convergence Software, Hallym University, Republic of Korea
iambd822@gmail.com, yskim01@hallym.ac.kr

64

This paper is organized as follows. Section 2

describes the model proposed in this paper. Section

3 describes hyper-parameters and experimental

environments, and Section 4 describes the

evaluation and the experimental results. Finally,

Section 5 concludes with a summary of what we

have identified.

2 Model

As shown in Figure 1, the proposed model's

architecture is based on Collobert et al. (2011). The

proposed structure is slightly modified. In this

paper, a model consisting of SPE and a single CNN

is proposed. A single CNN consists of three layers:

convolutional layer, pooling layer (max and

average), and fully-connected layer with softmax.

Each component is described in detail in the rest of

this section.

2.1 Sinusoidal Positional Encoding

CNN is difficult to learn word order in sentences

(Britz, 2015; Yenigalla et al., 2018). For example,

CNN learns “The wolves ate” and “ate the wolves”

as the same representation. Therefore, studies have

been conducted to effectively provide sequential

information to neural network models, excluding

RNN (Yang et al., 2016; Gehring et al., 2017;

Vaswani et al., 2017).

 The SPE introduced by Vaswani et al. (2017)

uses sine and cosine functions to represent each

word's relative position in an embedding. Besides,

it provides useful position information with a

parameter-free position representation. SPE

(𝑃𝐸(𝑝𝑜𝑠,𝑖)) is calculated as follows:

 𝑃𝐸(𝑝𝑜𝑠,2𝑖) = sin(
𝑝𝑜𝑠

10000
2𝑖

𝑑𝑖𝑚⁄
) (1)

 𝑃𝐸(𝑝𝑜𝑠,2𝑖+1) = cos(
𝑝𝑜𝑠

10000
2𝑖

𝑑𝑖𝑚⁄
) (2)

, where 𝑝𝑜𝑠 is the position of each word in the

embedding, 𝑖 is the position of the dimension in the

word vector, and 𝑑𝑖𝑚 is the size of the word vector.

Therefore, SPE provides the position information

by calculating the word vector's even and odd

dimensions with sine and cosine functions,

respectively.

In this paper, each word's position information

obtained from SPE (𝑝𝑡) was added to the word

vector (𝑥𝑖), as shown in Equation (3).

�⃗�𝑖 = 𝑥𝑖 + 𝑝𝑡 (3)

 The SPE's position information provides useful

information when a single CNN extracts features

from a word vector. Through this, fine-tuning for

word vectors is not considered in training. This can

reduce the parameter size required for fine-tuning.

The word vector generated in this way is

transferred to a single CNN.

2.2 Single Convolutional Neural Networks

𝑥𝑖 ∈ ℝ𝑘 is a k-dimensional word vector

constituting a sentence, and if the length of the

sentence is 𝐿, the embedding matrix is represented

as 𝑥𝑖:𝐿 ∈ ℝ𝐿×𝑘 . The weight of the convolution

filter applied to the embedding matrix is

represented as 𝑤 ∈ ℝ𝑗×𝑘, and a new feature 𝑐𝑖 is

generated from 𝑗 word vectors represented in k-

dimensions. For example, feature 𝑐𝑖 (when

stride=1) is created as follows:

Figure 1: Model architecture of Single CNN with Sinusoidal Positional Encoding.

65

Dataset 𝒄 𝑫𝒕𝒓𝒂𝒊𝒏 𝑫𝒗𝒂𝒍 𝑫𝒕𝒆𝒔𝒕 |𝑽| |𝑽𝒑𝒓𝒆|

IMDB 2 22,500 2,500 25,000 112,540 58,843

MR 2 8,635 960 1,067 18,764 16,448

MPQA 2 8,587 955 1,067 6,246 6,083

TREC 6 4,843 539 500 8,689 7,461

Reuters 10 6,472 720 2,787 28,482 17,508

20news 20 10,182 1,132 7,532 117,925 50,021

 𝑐𝑖 = 𝑓(𝑤 ∙ 𝑥𝑖:𝑖+𝑗−1 + 𝑏) (4)

In Equation (4), 𝑓 is the activation function, and

𝑏 ∈ ℝ is the bias value. This convolution filter is

applied to all possible 𝑗 words in a sentence, and all

features are concatenated to generate a single

feature map 𝑐.

 𝑐 = [𝑐1, 𝑐2, 𝑐3, … , 𝑐𝑖−𝑗+1] (5)

In this paper, the feature map 𝑐 obtained from

the convolutional layer is transferred after

normalization. The normalized feature map 𝑐

applies a max-pooling layer (�̂� = 𝑚𝑎𝑥(𝑐)) that

extracts the maximum value and an average-

pooling layer (�̃� = 𝑎𝑣𝑔(𝑐)) that extracts the

average value. The obtained features are

concatenated and transferred to a fully-connected

layer with softmax after regularization to classify

the class.

2.3 Normalization and Regularization

We used LayerNormalization (Ba et al., 2016) for

feature map 𝑐 . LayerNormalization is applied

independently to each feature map for

normalization. Furthermore, since it is normalized

to the mean (𝜇) and variance (𝜎), it can be applied

equally to training and test data and has high time-

efficiency.

 𝜇𝑙 =
1

𝐻
∑ 𝑎𝑖

𝑙𝐻
𝑖=1 (6)

 𝜎𝑙 = √
1

𝐻
∑ (𝑎𝑖

𝑙 − 𝜇𝑖
𝑙)2𝐻

𝑖=1 (7)

, where 𝐻 is the number of hidden nodes in the

layer and 𝑎𝑖 is the 𝑖-th vector at the hidden nodes.

For regularization, we used Dropout (Srivastava

et al., 2014) for feature 𝑧 = [�̂�1, … , �̂�𝑚, �̃�1, … , �̃�𝑚]

1 https://ai.stanford.edu/~amaas/data/sentiment/
2 https://www.cs.cornell.edu/people/pabo/movie-review-

data/
3 https://mpqa.cs.pitt.edu/
4 https://cogcomp.seas.upenn.edu/Data/QA/QC/

obtained from the max-pooling layer and the

average-pooling layer.

3 Experimental Setup

3.1 Datasets

In this paper, six benchmark datasets - Sentiment

classification: Internet Movie Database (IMDB)1,

movie review dataset (MR)2 (Pang and Lee, 2005).

Question categorization: MPQA dataset3 (Wiebe et

al., 2005), TREC question dataset4 (Li and Roth,

2002). News categorization: Reuters dataset5 and

20news dataset6 - are used. Table 1 summarizes

each dataset.

3.2 Implementation Details

In this paper, the GloVe7 (Pennington et al., 2014)

vector, which pre-trained with 840 billion words

provided by Stanford University, is used,

representing the word vector as 300 dimensions.

The hyper-parameters are set the same for all

datasets. The activate function used in the

convolution layer is a linear function, not a

nonlinear function such as ReLU (Nair and Hinton,

2010) or hyperbolic tangent. The filter window size

(𝑗) is 3, the number of filters is 128, the

l2_regularizer is 0.0001, the epsilon in

LayerNormalization is 1e-6, the dropout rate is 0.1,

and the mini-batch size is 40. These values were

determined experimentally.

Also, we use only early stops when training. As

shown in Table 1, the validation dataset is

randomly selected, and it is 10% of the training

dataset. Furthermore, optimization is performed

using Adam optimizer (Kingma and Ba, 2015), and

the learning ratio is set to 0.0001.

5 https://www.nltk.org/book/ch02.html (used only the data

of the 10 largest topics)
6 https://scikit-

learn.org/0.19/datasets/twenty_newsgroups.html
7 https://nlp.stanford.edu/projects/glove/

Table 1: Summary for the datasets after tokenization. 𝑐: Number of class. 𝐷𝑡𝑟𝑎𝑖𝑛: train size. 𝐷𝑣𝑎𝑙: validation size.

𝐷𝑡𝑒𝑠𝑡: test size. |𝑉|: Vocabulary size. |𝑉𝑝𝑟𝑒|: Number of words presented in the set of pre-trained word vectors.

https://ai.stanford.edu/~amaas/data/sentiment/
https://www.cs.cornell.edu/people/pabo/movie-review-data/
https://www.cs.cornell.edu/people/pabo/movie-review-data/
https://mpqa.cs.pitt.edu/
https://cogcomp.seas.upenn.edu/Data/QA/QC/
https://www.nltk.org/book/ch02.html
https://scikit-learn.org/0.19/datasets/twenty_newsgroups.html
https://scikit-learn.org/0.19/datasets/twenty_newsgroups.html
https://nlp.stanford.edu/projects/glove/
https://nlp.stanford.edu/projects/glove/

66

3.3 Baseline Model

In this paper, to confirm our model's performance,

we compare it with various models using only

CNN as follows: CNN-static and CNN-nonstatic

(Kim, 2014), DCNN (Kalchbrenner et al., 2014),

Capsule-A and Capsule-B (Zhao et al., 2018),

CapsNet-static and CapsNet-dynamic (Kim et al.,

2020). These models are set identically to the

hyper-parameters proposed in each paper.

We also identify a model that does not use SPE

to confirm SPE's usefulness in the CNN-based

approach and are as follows: SingleSCNN-static

(without fine-tuning) and SingleSCNN-nonstatic

(with fine-tuning).

4 Results and Discussion

First, we check the parameter size and training time.

When measuring the training time, all models set

the mini-batch size to 5. The results are shown in

Table 2.

Each model, except the proposed model,

performs fine-tuning in training. The size of the

parameters, including this, is shown in Table 2. In

this case, our model reduces the parameter size

significantly, which is compared to the previous

one. Even in excluding fine-tuning, the parameter

size could be reduced by about 67% (CNN-static).

The training times are reduced by up to 90%

based on the IMDB with the large-scale dataset,

Model Type IMDB MR MPQA TREC Reuters 20news

CNN-static
P 361K 361K 361K 362K 363K 366K

T 40 15 15 8 12 18

CNN-nonstatic
P 37,637K 6,208K 2,245K 2,969K 9,260K 54,130K

T 91 18 16 9 15 52

DCNN
P 37,874K 6,445K 2,482K 3,205K 9,497K 54,366K

T 146 38 36 21 32 77

Capsule-A
P 37,318K 5,889K 1,926K 2,649K 8,941K 53,810K

T 230 32 30 17 60 111

Capsule-B
P 37,431K 6,002K 2,039K 2,764K 9,058K 53,932K

T 425 67 65 35 120 213

CapsNet-static
P 47,970K 9,354K 3,158K 7,227K 21,627K 66,503K

T 287 37 31 21 76 159

CapsNet-Dynamic
P 47,970K 9,354K 3,158K 7,227K 21,627K 66,503K

T 289 37 31 22 76 160

SingleCNN-static
P 116K 116K 116K 117K 118K 121K

T 36 15 15 8 10 17

SingleCNN-nonstatic
P 37,392K 5,963K 53,884K 9,015K 2,000K 2,724K

T 85 18 16 9 13 50

Single CNN-SPE

(Proposed Model)

P 116K 116K 116K 117K 118K 121K

T 36 15 15 8 10 17

Table 2: Experimental results of parameter size and training times (P: parameter size, T: seconds/epoch). The

best values in each dataset is shown in bolded.

Model IMDB MR MPQA TREC Reuters 20news

CNN-static 89.72 79.38 87.73 90.84 86.83 83.18

CNN-nonstatic 89.69 81.09 88.42 91.12 87.17 84.63

DCNN 89.6 79.53 89.26 89.32 87.06 81.55

Capsule-A 86.16 78.22 86.93 82.94 82.29 60.65

Capsule-B 89 79.74 88.19 82.95 88.1 69.97

CapsNet-static 87.18 77.96 88.75 92.08 87.58 81.34

CapsNet-Dynamic 86.47 78.31 89.2 92.35 87.45 82.42

SingleCNN-static 90.37 80.23 88.43 91.08 86.03 81.71

SingleCNN-nonstatic 90.58 80.02 88.41 91.13 86.91 83.78

SingleCNN-SPE

(Proposed Model)
90.44 80.93 88.88 92.52 86.89 82.95

Table 3: Experimental results of accuracy. Models marked with an asterisk used the code published by the

author on GitHub for accurate implementation.

67

and only CNN-static shows a similar training time

to our model.

Table 3 shows the performance of the models

composed of the parameter size in Table 2. In the

performance evaluation, all methods are repeated

five times, and the average accuracy is measured.

Our model maintains similar performance to other

models, despite reducing the parameter size by at

least 67%.

 Additionally, we confirmed SPE's usefulness

for word vectors represented based on simple bag-

of-words, as shown in Table 4. Originally, SPE

calculates each word's position information from

the word vector based on the distributed

representation. Therefore, as shown in Table 3,

when the word vectors based on distributed

representation was used, SPE's usefulness was

confirmed. Experimental results with bag-of-

words based word vectors were not good. It was

also confirmed that the SPE's position information

is difficult to provide efficient information in the

bag-of-words based word vector.

4.1 SPE vs Fine-tuning

Kim (2014) confirmed the usefulness of fine-

tuning for pre-trained word vectors, and it is still

used in many research. However, this process

requires additional parameters in addition to the

parameters of the model in training. Therefore, we

compared the performance with SingleCNN-static

and SingleCNN-nonstatic to confirm SPE's

usefulness in the CNN-based approach.

As shown in Table 3, the position information

obtained by the SPE confirmed a result similar to

the effect of fine-tuning in the CNN-based

approach. It is considered that the position

information obtained by the SPE can have an

efficient effect without fine-tuning in the CNN-

based approach.

Additionally, other models' performance was

different from that of the previous paper, which is

considered to have arisen from the experimental

environment's difference.

5 Conclusion

In this paper, we propose a single convolutional

neural network to which sinusoidal positional

encoding is applied. Besides, we describe an

experiment to confirm the usefulness of sinusoidal

positional encoding in the CNN-based approach.

This model shows excellent performance despite

being lightweight in text classification. Although

this model reduced the parameter size by at least

67%, it was possible to confirm a similar

performance to the previous model. Besides, a

similar effect could be confirmed without fine-

tuning in the CNN-based approach.

In the future, we intend to study a method that

can easily learn the position information of words

in a manner other than SPE. Through this, we want

to develop a more straightforward and more

powerful model that can show both the time-

advantageous CNN and the sequential learning

power of RNN.

Acknowledgement

This work was supported by the National Research

Foundation of Korea (NRF) grant funded by the

Korea government (MSIT) (No.

2019R1A2C2006010).

Reference

Md Zahangir Alom, Tarek M. Taha, Chris Yakopcic,

Stefan Westberg, Paheding Sidike, Mst Shamima

Nasrin, Mahmudul Hasan, Brian C. Van Essen,

Abdul A. S. Awwal, and Vijayan K. Asari. 2019. A

state-of-the-art survey on deep learning theory and

architectures. Electronics, 8(3):292.

https://doi.org/10.3390/electronics8030292.

Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E.

Hinton. 2016. Layer Normalization. arXiv preprint

arXiv:1607.06450.

Denny Britz. 2015. Understanding convolutional

neural networks for NLP.

http://www.wildml.com/2015/11/understanding-

convolutional-neural-networks-for-nlp/.

Ronan Collobert, Jason Weston, Léon Bottou, Michael

Karlen, Koray Kavukcuoglu, and Pavel Kuksa.

2011. Natural Language Processing (Almost) from

Model MR MPQA TREC Reuters

SingleCNN-static 71.68 82.86 83.76 84.91

SingleCNN-SPE 52.26 67.77 86.6 83.76

Table 4: Experimental results using simple bag-of-words.

https://doi.org/10.3390/electronics8030292
http://www.wildml.com/2015/11/understanding-convolutional-neural-networks-for-nlp/
http://www.wildml.com/2015/11/understanding-convolutional-neural-networks-for-nlp/

68

Scratch. Journal of machine learning research,

12:2493-2537.

Jonas Gehring, Michael Auli, David Grangier, Denis

Yarats, and Yann N. Dauphin. 2017. Convolutional

Sequence to Sequence Learning. In Proceedings of

the 34th International Conference on Machine

Learning (Volume 70), pages 1243-1252.

Md Amirul Islam, Sen Jia, and Neil D. B. Bruce. 2020.

How Much Position Information Do Convolutional

Neural Networks Encode?. In Proceedings of the

8th International Conference on Learning

Representations.

Nal Kalchbrenner, Edward Grefenstette, and Phill

Blunsom. 2014. A convolutional neural network for

modelling sentences. In Proceedings of the 52nd

Annual Meeting of the Association for

Computational Linguistics, pages 655-665.

https://www.aclweb.org/anthology/P14-1062.

Jaeyoung Kim, Sion Jang, Eunjeong Park, and

Sungchul Choi. 2020. Text classification using

capsules. Neurocomputing, 376:214-221.

https://doi.org/10.1016/j.neucom.2019.10.033.

Yoon Kim. 2014. Convolutional Neural Networks for

Sentence Classification. In Proceedings of the 2014

Conference on Empirical Methods in Natural

Language Processing, pages 1746-1751.

https://www.aclweb.org/anthology/D14-1181.

Diederik P. Kingma and Jimmy Lei Ba. 2015. Adam:

A Method for Stochastic Optimization. In

Proceedings of the 3rd International Conference on

Learning Representations.

Siwei Lai, Liheng Xu, Kang Liu, and Jun Zhao. 2015.

Recurrent Convolutional Neural Networks for Text

Classification. In Proceedings of the Twenty-ninth

AAAI Conference on Artificial Intelligence, pages

2267-2273.

Xin Li and Dan Roth. 2002. Learning Question

Classifiers. In Proceeding of the 19th International

Conference on Computational Linguistics.

https://www.aclweb.org/anthology/C02-1150.

Vinod Nair and Geoffrey E. Hinton. 2010. Rectified

Linear Units Improve Restricted Boltzmann

Machines. In Proceedings of the 27th International

Conference on Machine Learning, pages 807-814.

Bo Pang and Lillian Lee. 2005. Seeing stars:

Exploiting class relationships for sentiment

categorization with respect to rating scales. In

Proceedings of the 43rd Annual Meeting on

Association for Computational Linguistics, pages

115-124. https://www.aclweb.org/anthology/P05-

1015.

Jeffrey Pennington, Richard Socher, and Christopher D.

Manning. 2014. Glove: Global Vectors for Word

Representation. In Proceedings of the 2014

Conference on Empirical Methods in Natural

Language Processing, pages 1532-1543.

https://www.aclweb.org/anthology/D14-1162.

Nitish Srivastava, Geoffrey E. Hinton, Alex

Krizhevsky, Ilya Sutskever, and Ruslan

Salakhutdinov. 2014. Dropout: A Simple Way to

Prevent Neural Networks from Overfitting. Journal

of machine learning research, 15(1):1929-1958.

Sho Takase and Naoaki Okazaki. 2019. Positional

Encoding to Control Output Sequence Length. In

Proceedings of the 2019 Conference of the North

American Chapter of the Association for

Computational Linguistics: Human Language

Technologies, pages 3999-4004.

https://www.aclweb.org/anthology/N19-1401.

Yi Tay, Aston Zhang, Luu Anh Tuan, Jinfeng Rao,

Shuai Zhang, Shuohang Wang, Jie Fu, and Siu

Cheung Hui. 2019. Lightweight and Efficient

Neural Natural Language Processing with

Quaternion Networks. In Proceedings of the 57th

Annual Meeting of the Association for

Computational Linguistics, pages 1494-1503.

https://www.aclweb.org/anthology/P19-1145.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob

Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz

Kaiser, and Illia Polosukhin. 2017. Attention Is All

You Need. In Advances in Neural Information

Processing Systems, pages 5998-6008.

Janyce Wiebe, Theresa Wilson, and Claire Cardie.

2005. Annotating Expressions of Opinions and

Emotions in Language. Language Resources and

Evaluation, 39(2-3):165-210.

https://doi.org/10.1007/s10579-005-7880-9.

Yunlun Yang, Yunhai Tong, Shulei Ma, and Zhi-Hong

Deng. 2016. A Position Encoding Convolutional

Neural Network Based on Dependency Tree for

Relation Classification. In Proceedings of the 2016

Conference on Empirical Methods in Natural

Language Processing, pages 65-74.

https://www.aclweb.org/anthology/D16-1007.

Promod Yenigalla, Sibsambhu Kar, Chirag Singh, Ajay

Nagar, and Gaurav Mathur. 2018. Addressing

Unseen Word Problem in Text Classification. In

Proceedings of the International Conference on

Applications of Natural Language to Information

Systems, pages 339-351.

https://doi.org/10.1007/978-3-319-91947-8_36.

Xiang Zhang, Junbo Zhao, and Yann LeCun. 2015.

Character-level Convolutional Networks for Text

Classification. In Advances in Neural Information

Processing Systems, pages 649-657.

Biao Zhang and Rico Sennrich. 2019. A Lightweight

Recurrent Networks for Sequence Modeling. In

https://www.aclweb.org/anthology/P14-1062
https://doi.org/10.1016/j.neucom.2019.10.033
https://www.aclweb.org/anthology/D14-1181
https://www.aclweb.org/anthology/C02-1150
https://www.aclweb.org/anthology/P05-1015
https://www.aclweb.org/anthology/P05-1015
https://www.aclweb.org/anthology/D14-1162
https://www.aclweb.org/anthology/N19-1401
https://www.aclweb.org/anthology/P19-1145
https://doi.org/10.1007/s10579-005-7880-9
https://www.aclweb.org/anthology/D16-1007
https://doi.org/10.1007/978-3-319-91947-8_36

69

Proceedings of the 57th Annual Meeting of the

Association for Computational Linguistics, pages

1538-1548. https://www.aclweb.org/anthology/P19-

1149.

Wei Zhao, Jianbo Ye, Min Yang, Zeyang Lei, Soufei

Zhang, and Zhou Zhao. 2018. Investigating Capsule

Networks with Dynamic Routing for Text

Classification. In Proceedings of the 2018

Conference on Empirical Methods in Natural

Language Processing, pages 3110-3119.

https://www.aclweb.org/anthology/D18-1350.

https://www.aclweb.org/anthology/P19-1149
https://www.aclweb.org/anthology/P19-1149
https://www.aclweb.org/anthology/D18-1350

