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Abstract 

Large and complex models have recently 

been developed that require many 

parameters and much time to solve various 

problems in natural language processing. 

This paper explores an efficient way to 

avoid models being too complicated and 

ensure nearly equal performance to models 

showing the state-of-the-art. We propose a 

single convolutional neural network (CNN) 

using the sinusoidal positional encoding 

(SPE) in text classification. The SPE 

provides useful position information of a 

word and can construct a more efficient 

model architecture than before in a CNN-

based approach. Our model can 

significantly reduce the parameter size (at 

least 67%) and training time (up to 85%) 

while maintaining similar performance to 

the CNN-based approach on multiple 

benchmark datasets. 

1 Introduction 

In recent years, convolutional neural networks 

(CNN) have shown remarkable performance and 

time-efficiency in text classification tasks such as 

sentiment analysis and document classification. 

(Kim, 2014; Kalchbrenner et al., 2014; Zhang et 

al., 2015). In particular, Kim (2014) shows the 

importance of pre-trained word vectors and fine-

tuned word vectors for each task, currently being 

used in many studies. However, in CNN, 

convolution and pooling operations lose 

information about the local order of words (Britz, 

2015; Yenigalla et al., 2018). To solve this problem, 

various studies have been conducted on model 

architectures capable of effectively extracting 

features from CNN (Kim, 2014; Kalchbrenner et 

al., 2014; Zhang et al., 2015; Lai et al., 2015; Zhao 

et al., 2018; Kim et al., 2020). 

On the other hand, when using a word vector 

based on a distributed representation, fine-tuning 

of the pre-trained word vector for each task 

requires more parameters in proportion to the 

sequence length. Along with this, the proposed 

large and complex model architectures have 

improved performance, but additional space and 

time costs are required due to numerous parameters 

(Alom et al., 2019). Recently, studies have been 

conducted on efficient model architectures with 

less parameter size and computational cost without 

significant performance loss compared to existing 

models (Vaswani et al., 2017; Tay et al., 2019; 

Zhang and Sennrich, 2019). 

Vaswani et al. (2017) introduced sinusoidal 

positional encoding (SPE) and multi-head self-

attention to introduce a simple model architecture 

with less parameter size and computational cost 

than before. The SPE provides useful word 

position information without recurrent neural 

networks (RNN) and, at the same time, requires 

less parameter size. Due to these advantages, 

studies have been conducted to show the 

usefulness of location encoding in computer vision 

and natural language processing (Takase and 

Okazaki, 2019; Islam et al., 2020). 

In this paper, we propose a single CNN with 

SPE and construct a simpler model architecture 

than before with useful position information. SPE's 

position information is applied to the pre-trained 

word vector, and it is maintained as a static vector 

without fine-tuning. A single CNN extracts 

significant features from word vectors containing 

position information. The results of this study are 

confirmed against six benchmark datasets. The 

proposed model is challenging to achieve state-of-

the-art, but it maintained similar performance as 

before, despite significantly reducing the 

parameter size and time cost compared to the 

previous CNN-based approaches. 

Lightweight Text Classifier using Sinusoidal Positional Encoding 
  

  

Byoung-Doo Oh and Yu-Seop Kim 

Department of Convergence Software, Hallym University, Republic of Korea 
iambd822@gmail.com, yskim01@hallym.ac.kr 



64

This paper is organized as follows. Section 2 

describes the model proposed in this paper. Section 

3 describes hyper-parameters and experimental 

environments, and Section 4 describes the 

evaluation and the experimental results. Finally, 

Section 5 concludes with a summary of what we 

have identified. 

2 Model 

As shown in Figure 1, the proposed model's 

architecture is based on Collobert et al. (2011). The 

proposed structure is slightly modified. In this 

paper, a model consisting of SPE and a single CNN 

is proposed. A single CNN consists of three layers: 

convolutional layer, pooling layer (max and 

average), and fully-connected layer with softmax. 

Each component is described in detail in the rest of 

this section. 

2.1 Sinusoidal Positional Encoding 

CNN is difficult to learn word order in sentences  

(Britz, 2015; Yenigalla et al., 2018). For example, 

CNN learns “The wolves ate” and “ate the wolves” 

as the same representation. Therefore, studies have 

been conducted to effectively provide sequential 

information to neural network models, excluding 

RNN (Yang et al., 2016; Gehring et al., 2017; 

Vaswani et al., 2017). 

 The SPE introduced by Vaswani et al. (2017) 

uses sine and cosine functions to represent each 

word's relative position in an embedding. Besides, 

it provides useful position information with a 

parameter-free position representation. SPE 

(𝑃𝐸(𝑝𝑜𝑠,𝑖)) is calculated as follows: 

 𝑃𝐸(𝑝𝑜𝑠,2𝑖) = sin(
𝑝𝑜𝑠

10000
2𝑖

𝑑𝑖𝑚⁄
)  (1) 

 𝑃𝐸(𝑝𝑜𝑠,2𝑖+1) = cos(
𝑝𝑜𝑠

10000
2𝑖

𝑑𝑖𝑚⁄
)  (2) 

, where 𝑝𝑜𝑠 is the position of each word in the 

embedding, 𝑖 is the position of the dimension in the 

word vector, and 𝑑𝑖𝑚 is the size of the word vector. 

Therefore, SPE provides the position information 

by calculating the word vector's even and odd 

dimensions with sine and cosine functions, 

respectively. 

In this paper, each word's position information 

obtained from SPE (𝑝𝑡 ) was added to the word 

vector (𝑥𝑖), as shown in Equation (3). 

�⃗�𝑖 = 𝑥𝑖 + 𝑝𝑡               (3) 

 The SPE's position information provides useful 

information when a single CNN extracts features 

from a word vector. Through this, fine-tuning for 

word vectors is not considered in training. This can 

reduce the parameter size required for fine-tuning. 

The word vector generated in this way is 

transferred to a single CNN. 

2.2 Single Convolutional Neural Networks 

𝑥𝑖 ∈ ℝ𝑘  is a k-dimensional word vector 

constituting a sentence, and if the length of the 

sentence is 𝐿, the embedding matrix is represented 

as 𝑥𝑖:𝐿 ∈ ℝ𝐿×𝑘 . The weight of the convolution 

filter applied to the embedding matrix is 

represented as 𝑤 ∈ ℝ𝑗×𝑘, and a new feature 𝑐𝑖 is 

generated from 𝑗  word vectors represented in k-

dimensions. For example, feature 𝑐𝑖  (when 

stride=1) is created as follows:  

Figure 1: Model architecture of Single CNN with Sinusoidal Positional Encoding. 
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Dataset 𝒄 𝑫𝒕𝒓𝒂𝒊𝒏 𝑫𝒗𝒂𝒍 𝑫𝒕𝒆𝒔𝒕 |𝑽| |𝑽𝒑𝒓𝒆| 

IMDB 2 22,500 2,500 25,000 112,540 58,843 

MR 2 8,635 960 1,067 18,764 16,448 

MPQA 2 8,587 955 1,067 6,246 6,083 

TREC 6 4,843 539 500 8,689 7,461 

Reuters 10 6,472 720 2,787 28,482 17,508 

20news 20 10,182 1,132 7,532 117,925 50,021 

 𝑐𝑖 = 𝑓(𝑤 ∙ 𝑥𝑖:𝑖+𝑗−1 + 𝑏)  (4) 

In Equation (4), 𝑓 is the activation function, and 

𝑏 ∈ ℝ is the bias value. This convolution filter is 

applied to all possible 𝑗 words in a sentence, and all 

features are concatenated to generate a single 

feature map 𝑐. 

 𝑐 = [𝑐1, 𝑐2, 𝑐3, … , 𝑐𝑖−𝑗+1]  (5) 

In this paper, the feature map 𝑐  obtained from 

the convolutional layer is transferred after 

normalization. The normalized feature map 𝑐 

applies a max-pooling layer ( �̂� = 𝑚𝑎𝑥(𝑐) ) that 

extracts the maximum value and an average-

pooling layer ( �̃� = 𝑎𝑣𝑔(𝑐) ) that extracts the 

average value. The obtained features are 

concatenated and transferred to a fully-connected 

layer with softmax after regularization to classify 

the class. 

2.3 Normalization and Regularization 

We used LayerNormalization (Ba et al., 2016) for 

feature map 𝑐 . LayerNormalization is applied 

independently to each feature map for 

normalization. Furthermore, since it is normalized 

to the mean (𝜇) and variance (𝜎), it can be applied 

equally to training and test data and has high time-

efficiency. 

 𝜇𝑙 =
1

𝐻
∑ 𝑎𝑖

𝑙𝐻
𝑖=1   (6) 

 𝜎𝑙 = √
1

𝐻
∑ (𝑎𝑖

𝑙 − 𝜇𝑖
𝑙)2𝐻

𝑖=1   (7) 

, where 𝐻 is the number of hidden nodes in the 

layer and 𝑎𝑖 is the 𝑖-th vector at the hidden nodes. 

For regularization, we used Dropout (Srivastava 

et al., 2014) for feature 𝑧 = [�̂�1, … , �̂�𝑚, �̃�1, … , �̃�𝑚] 

 
1 https://ai.stanford.edu/~amaas/data/sentiment/ 
2 https://www.cs.cornell.edu/people/pabo/movie-review-

data/ 
3 https://mpqa.cs.pitt.edu/ 
4 https://cogcomp.seas.upenn.edu/Data/QA/QC/ 

obtained from the max-pooling layer and the 

average-pooling layer. 

3 Experimental Setup 

3.1 Datasets 

In this paper, six benchmark datasets - Sentiment 

classification: Internet Movie Database (IMDB)1, 

movie review dataset (MR)2 (Pang and Lee, 2005). 

Question categorization: MPQA dataset3 (Wiebe et 

al., 2005), TREC question dataset4  (Li and Roth, 

2002). News categorization: Reuters dataset5  and 

20news dataset6  - are used. Table 1 summarizes 

each dataset. 

3.2 Implementation Details 

In this paper, the GloVe7 (Pennington et al., 2014) 

vector, which pre-trained with 840 billion words 

provided by Stanford University, is used, 

representing the word vector as 300 dimensions. 

The hyper-parameters are set the same for all 

datasets. The activate function used in the 

convolution layer is a linear function, not a 

nonlinear function such as ReLU (Nair and Hinton, 

2010) or hyperbolic tangent. The filter window size 

( 𝑗 ) is 3, the number of filters is 128, the 

l2_regularizer is 0.0001, the epsilon in 

LayerNormalization is 1e-6, the dropout rate is 0.1, 

and the mini-batch size is 40. These values were 

determined experimentally. 

Also, we use only early stops when training. As 

shown in Table 1, the validation dataset is 

randomly selected, and it is 10% of the training 

dataset. Furthermore, optimization is performed 

using Adam optimizer (Kingma and Ba, 2015), and 

the learning ratio is set to 0.0001. 

5 https://www.nltk.org/book/ch02.html (used only the data 

of the 10 largest topics) 
6 https://scikit-

learn.org/0.19/datasets/twenty_newsgroups.html 
7 https://nlp.stanford.edu/projects/glove/ 

Table 1: Summary for the datasets after tokenization. 𝑐: Number of class. 𝐷𝑡𝑟𝑎𝑖𝑛: train size. 𝐷𝑣𝑎𝑙: validation size. 

𝐷𝑡𝑒𝑠𝑡: test size. |𝑉|: Vocabulary size. |𝑉𝑝𝑟𝑒|: Number of words presented in the set of pre-trained word vectors. 

https://ai.stanford.edu/~amaas/data/sentiment/
https://www.cs.cornell.edu/people/pabo/movie-review-data/
https://www.cs.cornell.edu/people/pabo/movie-review-data/
https://mpqa.cs.pitt.edu/
https://cogcomp.seas.upenn.edu/Data/QA/QC/
https://www.nltk.org/book/ch02.html
https://scikit-learn.org/0.19/datasets/twenty_newsgroups.html
https://scikit-learn.org/0.19/datasets/twenty_newsgroups.html
https://nlp.stanford.edu/projects/glove/
https://nlp.stanford.edu/projects/glove/
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3.3 Baseline Model 

In this paper, to confirm our model's performance, 

we compare it with various models using only 

CNN as follows: CNN-static and CNN-nonstatic 

(Kim, 2014), DCNN (Kalchbrenner et al., 2014), 

Capsule-A and Capsule-B (Zhao et al., 2018), 

CapsNet-static and CapsNet-dynamic (Kim et al., 

2020). These models are set identically to the 

hyper-parameters proposed in each paper. 

We also identify a model that does not use SPE 

to confirm SPE's usefulness in the CNN-based 

approach and are as follows: SingleSCNN-static 

(without fine-tuning) and SingleSCNN-nonstatic 

(with fine-tuning). 

4 Results and Discussion 

First, we check the parameter size and training time. 

When measuring the training time, all models set 

the mini-batch size to 5. The results are shown in 

Table 2. 

Each model, except the proposed model, 

performs fine-tuning in training. The size of the 

parameters, including this, is shown in Table 2. In 

this case, our model reduces the parameter size 

significantly, which is compared to the previous 

one. Even in excluding fine-tuning, the parameter 

size could be reduced by about 67% (CNN-static). 

The training times are reduced by up to 90% 

based on the IMDB with the large-scale dataset, 

Model Type IMDB MR MPQA TREC Reuters 20news 

CNN-static 
P 361K 361K 361K 362K 363K 366K 

T 40 15 15 8 12 18 

CNN-nonstatic 
P 37,637K 6,208K 2,245K 2,969K 9,260K 54,130K 

T 91 18 16 9 15 52 

DCNN 
P 37,874K 6,445K 2,482K 3,205K 9,497K 54,366K 

T 146 38 36 21 32 77 

Capsule-A 
P 37,318K 5,889K 1,926K 2,649K 8,941K 53,810K 

T 230 32 30 17 60 111 

Capsule-B 
P 37,431K 6,002K 2,039K 2,764K 9,058K 53,932K 

T 425 67 65 35 120 213 

CapsNet-static 
P 47,970K 9,354K 3,158K 7,227K 21,627K 66,503K 

T 287 37 31 21 76 159 

CapsNet-Dynamic 
P 47,970K 9,354K 3,158K 7,227K 21,627K 66,503K 

T 289 37 31 22 76 160 

SingleCNN-static 
P 116K 116K 116K 117K 118K 121K 

T 36 15 15 8 10 17 

SingleCNN-nonstatic 
P 37,392K 5,963K 53,884K 9,015K 2,000K 2,724K 

T 85 18 16 9 13 50 

Single CNN-SPE 

(Proposed Model) 

P 116K 116K 116K 117K 118K 121K 

T 36 15 15 8 10 17 

Table 2:  Experimental results of parameter size and training times (P: parameter size, T: seconds/epoch). The 

best values in each dataset is shown in bolded. 

Model IMDB MR MPQA TREC Reuters 20news 

CNN-static 89.72 79.38 87.73 90.84 86.83 83.18 

CNN-nonstatic 89.69 81.09 88.42 91.12 87.17 84.63 

DCNN 89.6 79.53 89.26 89.32 87.06 81.55 

Capsule-A 86.16 78.22 86.93 82.94 82.29 60.65 

Capsule-B 89 79.74 88.19 82.95 88.1 69.97 

CapsNet-static 87.18 77.96 88.75 92.08 87.58 81.34 

CapsNet-Dynamic 86.47 78.31 89.2 92.35 87.45 82.42 

SingleCNN-static 90.37 80.23 88.43 91.08 86.03 81.71 

SingleCNN-nonstatic 90.58 80.02 88.41 91.13 86.91 83.78 

SingleCNN-SPE 

(Proposed Model) 
90.44 80.93 88.88 92.52 86.89 82.95 

Table 3:  Experimental results of accuracy. Models marked with an asterisk used the code published by the 

author on GitHub for accurate implementation. 
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and only CNN-static shows a similar training time 

to our model. 

Table 3 shows the performance of the models 

composed of the parameter size in Table 2. In the 

performance evaluation, all methods are repeated 

five times, and the average accuracy is measured. 

Our model maintains similar performance to other 

models, despite reducing the parameter size by at 

least 67%. 

 Additionally, we confirmed SPE's usefulness 

for word vectors represented based on simple bag-

of-words, as shown in Table 4. Originally, SPE 

calculates each word's position information from 

the word vector based on the distributed 

representation. Therefore, as shown in Table 3, 

when the word vectors based on distributed 

representation was used, SPE's usefulness was 

confirmed. Experimental results with bag-of-

words based word vectors were not good. It was 

also confirmed that the SPE's position information 

is difficult to provide efficient information in the 

bag-of-words based word vector. 

4.1 SPE vs Fine-tuning 

Kim (2014) confirmed the usefulness of fine-

tuning for pre-trained word vectors, and it is still 

used in many research. However, this process 

requires additional parameters in addition to the 

parameters of the model in training. Therefore, we 

compared the performance with SingleCNN-static 

and SingleCNN-nonstatic to confirm SPE's 

usefulness in the CNN-based approach. 

As shown in Table 3, the position information 

obtained by the SPE confirmed a result similar to 

the effect of fine-tuning in the CNN-based 

approach. It is considered that the position 

information obtained by the SPE can have an 

efficient effect without fine-tuning in the CNN-

based approach. 

Additionally, other models' performance was 

different from that of the previous paper, which is 

considered to have arisen from the experimental 

environment's difference. 

5 Conclusion 

In this paper, we propose a single convolutional 

neural network to which sinusoidal positional 

encoding is applied. Besides, we describe an 

experiment to confirm the usefulness of sinusoidal 

positional encoding in the CNN-based approach. 

This model shows excellent performance despite 

being lightweight in text classification. Although 

this model reduced the parameter size by at least 

67%, it was possible to confirm a similar 

performance to the previous model. Besides, a 

similar effect could be confirmed without fine-

tuning in the CNN-based approach. 

In the future, we intend to study a method that 

can easily learn the position information of words 

in a manner other than SPE. Through this, we want 

to develop a more straightforward and more 

powerful model that can show both the time-

advantageous CNN and the sequential learning 

power of RNN. 
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