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Abstract

This paper evaluates the utility of Rhetorical
Structure Theory (RST) trees and relations in
discourse coherence evaluation. We show that
incorporating silver-standard RST features can
increase accuracy when classifying coherence.
We demonstrate this through our tree-recursive
neural model, namely RST-Recursive, which
takes advantage of the text’s RST features pro-
duced by a state of the art RST parser. We eval-
uate our approach on the Grammarly Corpus
for Discourse Coherence (GCDC) and show
that when ensembled with the current state of
the art, we can achieve the new state of the
art accuracy on this benchmark. Furthermore,
when deployed alone, RST-Recursive achieves
competitive accuracy while having 62% fewer
parameters.

1 Introduction

Discourse coherence has been the subject of much
research in Computational Linguistics thanks to its
widespread applications (Lai and Tetreault, 2018).
Most current methods can be described as either
stemming from explicit representations based on
the Centering Theory (Grosz et al., 1994), or deep
learning approaches that learn without the use of
hand-crafted linguistic features.

Our work explores a third research avenue based
on the Rhetorical Structure Theory (RST) (Mann
and Thompson, 1988). We hypothesize that texts
of low/high coherence tend to adhere to different
discourse structures. Thus, we pose that using even
silver-standard RST features should help in sepa-
rating coherent texts from incoherent ones. This
stems from the definition of the coherence itself -
as the writer of a document needs to follow spe-
cific rules for building a clear narrative or argument
structure in which the role of each constituent of
the document should be appropriate with respect
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Figure 1: Overview of RST-Recursive; EDU embed-
dings are generated for the leaf nodes using the EDU
network. Subsequently, the RST tree is recursively tra-
versed bottom-up using the RST network.

to its local and global context, and even existing
discourse parsers should be able to predict a plausi-
ble structure that is consistent across all coherent
documents. However, if a parser has difficulty in-
terpreting a given document, it will be more likely
to produce unrealistic trees with improbable pat-
terns of discourse relations between constituents.
This idea was first explored by Feng et al. (2014),
who followed an approach similar to Barzilay and
Lapata (2008) by estimating entity transition like-
lihoods, but instead using discourse relations (pre-
dicted by a state of the art discourse parser (Feng
and Hirst, 2014)) that entities participate in as op-
posed to their grammatical roles. Their method
achieved significant improvements in performance
even when using silver-standard discourse trees,
showing potential in the use of parsed RST fea-
tures for classifying textual coherence.

Our work, however, is the first to develop and test
a neural approach to leveraging RST discourse rep-
resentations in coherence evaluation. Furthermore,
Feng et al. (2014) only tested their proposal on the
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Figure 2: Recursive LSTM architecture used in RST-
Recursive adapted from (Tai et al., 2015).

sentence permutation task, which involves ranking
a sentence-permuted text against the original. As
noted by Lai and Tetreault (2018), this is not an ac-
curate proxy for realistic coherence evaluation. We
evaluate our method on their more realistic Gram-
marly Corpus Of Discourse Coherence (GCDC),
where the model needs to classify a naturally pro-
duced text into one of three levels of coherence.
Our contributions involve: (1) RST-Recursive, an
RST-based neural tree-recursive method for coher-
ence evaluation that achieves 2% below the state
of the art performance on the GCDC while having
62% fewer parameters. (2) When ensembled with
the current state of the art, namely Parseq (Lai and
Tetreault, 2018), we achieve a notable improvement
over the plain ParSeq model. (3) We demonstrate
the usefulness of silver-standard RST features in
coherence classification, and establish our results
as a lower-bound for performance improvements
to be gained using RST features.

2 Related Work

2.1 Coherence Evaluation of Text

Centering Theory (Grosz et al., 1994) states that
subsequent sentences in coherent texts are likely
to continue to focus on the same entities (i.e., sub-
jects, objects, etc.) as within the previous sentences.
Building on top of this, Barzilay and Lapata (2008)
were the first to propose the Entity-Grid model that
constructs a two-dimensional array G/, ,,, for a text
of n sentences and m entities, which are used to
estimate transition probabilities for entity occur-
rence patterns. More recently, Elsner and Charniak
(2011) extended Entity-Grid using entity-specific
features, while Tien Nguyen and Joty (2017) used
a Convolutional Neural Network (CNN) on top of
Entity-Grid to learn more hierarchical patterns.
On the other hand, feature-free deep neural tech-
niques have dominated recent research. Li and Ju-
rafsky (2017) applied Recurrent Neural Networks
(RNNs) to model the coherent generation of the
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Figure 3: Overview of the classification layer in RST-
Recursive; At the root of the RST tree, children’s hid-
den states are concatenated to form the document rep-
resentation d = [h;, h,] which is then transformed into
a 3-dimensional vector of Softmax probabilities.

next sentence given the current sentence and vice-
versa. Mesgar and Strube (2018) constructed a
local coherence model that encodes patterns of
changes on how adjacent sentences within the text
are semantically related. Recently, Moon et al.
(2019) used a multi-component model to capture
both local and global coherence perturbations. Lai
and Tetreault (2018) developed a hierarchical neu-
ral architecture named ParSeq with three stacked
LSTM Networks, designed to encode the coher-
ence at sentence, paragraph and document levels.

2.2 Rhetorical Structure Theory (RST)

RST describes the structure of a text in the follow-
ing way: first, the text is segmented into elementary
discourse units (EDUs), which describe spans of
text constituting clauses or clause-like units (Mann
and Thompson, 1988). Second, the EDUs are recur-
sively structured into a tree hierarchy where each
node defines an RST relation between the constitut-
ing sub-trees. The sub-tree with the central purpose
is called the nucleus, and the one bearing secondary
intent is called the satellite while a connective dis-
course relation is assigned to both. An example of
a “nucleus-satellite” relation pairing is presented in
Figure 1 where a claim is followed by the evidence
for the claim; RST posits an “Evidence” relation be-
tween these two spans with the left sub-tree being
the “nucleus” and the right sub-tree as “satellite”.

3 Method

3.1 RST-Recursive

We parse silver-standard RST trees for documents
using the CODRA (Joty et al., 2015) RST parser,
which we then employ as input to our recursive neu-
ral model, RST-Recursive. The overall procedure



for RST-Recursive is shown in Figure 1. Given a
document of n EDUs &.,, with each EDU ¢&; repre-
sented as a list of GloVe embeddings (Pennington
et al., 2014), we use an LSTM to process each &;,
using the final hidden state as the EDU embedding
e; = LSTM(¢;) for each leaf ¢ of the document’s
RST tree. Afterwards, we apply a recursive LSTM
architecture (Figure 2) that traverses the RST tree
bottom-up. At each node s, we use the children’s
sub-tree embeddings [hy, ¢;, r;] and [h,, c,, ;] to
form the node’s sub-tree embedding:

[h, cs] = TreeLSTM([hy, ¢, 1¢], by, 1y 1)
(1)

where h;/c; and h,./c, are the LSTM hidden and
cell states from the left and right sub-trees respec-
tively. The relation embeddings of the children
sub-trees, r; and r,., are learned vector embeddings
for each of the 31 pre-defined relation labels in the
form of “[relation]_[nucleus/satellite]” (e.g., “Evi-
dence _Satellite” for the last EDU in Figure 1). At
the root of the tree, the output hidden states from
both children are concatenated into a single docu-
ment embedding d = [h;, h,]. As shown in Figure
3, a fully connected layer is applied to this repre-
sentation before using a Softmax function to obtain
the coherence class probabilities.

3.2 Ensemble: ParSeq + RST-Recursive

To evaluate if the addition of silver-standard RST
features to existing methods can improve coherence
evaluation, we ensemble RST-Recursive with the
current state of the art coherence classifier: ParSeq.

A deep learned non-linguistic classifier, ParSeq
employs three layers of LSTMs that intend to
capture coherence at different granularities. An
overview of the ParSeq architecture is presented
in Figure 4. First, LSTM; (not shown) produces
a single sentence embedding for each sentence in
the text. Next, LSTMs> generates paragraph em-
beddings using the corresponding sentence embed-
dings from LSTM;. Finally, LSTM3; reads the para-
graph embeddings, generating the final document
embedding, which is passed to a fully connected
layer to produce Softmax label probabilities.

In this augmented variation of our model, we op-
erate ParSeq on the document independently until
a document level embedding d,, is obtained at the
highest-level LSTM. This document embedding
is then concatenated to the RST-Recursive coher-
ence embedding d = [hy, h,, dp,rse,] in Figure

coherence
prediction

paragraph paragraphm

( sentence, ) ( sentence: ) snn (sentencenq) ( sentencen)

Figure 4: The architectural overview of ParSeq; an il-
lustration of ParSeq’s structure, taken directly from the
original paper (Lai and Tetreault, 2018).

3 to produce class probabilities. Note that in this
ensemble variation, we initialize tree leaves ej.,
with zero-vectors as opposed to EDU embeddings
since ParSeq is sufficiently capable of capturing
semantic information on its own, and early experi-
ments using 5-fold cross-validation on the training
set revealed model overfitting when training with
EDU embeddings simultaneously.

4 Experiments

4.1 Dataset

We evaluate RST-Recursive and Ensemble on the
GCDC dataset (Lai and Tetreault, 2018). This
dataset consists of 4 separate sub-datasets: Clinton
emails, Enron emails, Yahoo answers, and Yelp
reviews, each containing 1000 documents for train-
ing and 200 documents for testing. Each document
is assigned a discrete coherence label of incoherent
(1), neutral (2), and coherent (3).

We parse RST trees for each example within the
GCDC dataset using CODRA (Joty et al., 2015).
Due to CODRA’s imperfect parsing of documents,
RST trees could not be obtained for approximately
1.5%-2% of the documents, which were then ex-
cluded from the study. In addition, we re-evaluated
ParSeq on only the RST-parsed portion of docu-
ments to assure consistent comparability of results.
For more details, see Appendix A/B. Our code and
dataset can be accessed below!, and the access to
the original GCDC corpus can be obtained here?.
We can share RST-parsings of GCDC examples
with interested readers upon request once access to
the GCDC dataset has also been obtained.

"https://github.com/grig-guz/coherence-rst
*https://github.com/aylai/GCDC-corpus
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MODEL ‘ T NS R E ‘ CLINTON ENRON YAHOO YELP AVERAGE
MAJORITY | | 5533 44.39 38.02 54.82 48.14

RST-REC |V 55.3340.00 44.3940.00 38.0240.00 54.824+0.00 48.14+0.00
RST-REC |v Vv 53.74+0.14 44.67+0.07 44.614+0.09 53.76+0.11 49.20+0.07
RST-REC |v v v |54.07+0.10 43.99+0.07 49.39+0.10 54.39+0.12 50.46+0.05
RST-REC |v v v v |55.70+0.08 53.8640.11 50.9240.13 51.70£0.16 53.04+0.09
PARSEQ | | 61.05+0.13 54.23+0.10 53.29+0.14 51.76+0.21 55.0940.09
ENSEMBLE | v/ 61.124+0.13 54.20+0.12 52.87+0.16 51.52+0.22 54.93+0.10
ENSEMBLE [ v V' *160.8240.13 54.01£0.10 52.92+0.15 51.63+0.24 54.85+0.10
ENSEMBLE | v/ v v * |61.17+0.12 53.994+0.10 53.99+0.14 52.40+0.21 55.39+0.09

Table 1: Overall and sub-dataset specific coherence classification accuracy on the GCDC dataset. Error boundaries
describe 95% confidence intervals. Values in bold describe statistically significant state of the art performance. *
indicates availability of EDU-level semantic information through the ensembling with ParSeq.

MODEL ‘ T NS R E ‘ CLINTON ENRON YAHOO YELP AVERAGE
MAJORITY | | 39.42 27.29 20.95 38.82 31.62

RST-REC |V 39.4240.00 27.2940.00 20.954+0.00 38.824+0.00 31.62+0.00
RST-REC |V v 39.20+0.03 30.8140.16 35.67+0.18 39.93+0.08 36.4040.09
RST-REC |v v v |41.0840.07 31.2140.13 41.9740.14 42.2740.09 39.13+0.08
RST-REC |v v v V|45.90+0.12 44.334+0.16 43.85+0.18 43.13£0.10 44.30+0.08
PARSEQ 52.1240.21 44.90+0.15 46.22+0.18 43.36+0.09 46.65+0.10
ENSEMBLE | v/ 52.354+0.22 44.924+0.16 45.48+0.22 43.70+0.11 46.61+0.11
ENSEMBLE | V' v/ 51.90+0.22 44.76+0.14 45.48+0.22 43.83+0.13 46.49+0.10
ENSEMBLE | v v v *|52.4240.19 44.69+0.15 46.88£0.17 43.94+0.09 46.98+0.09

Table 2: Overall and sub-dataset specific coherence classification F1 scores on the GCDC dataset. Error boundaries
describe 95% confidence intervals. Values in bold describe statistically significant state of the art performance. F1
scores are calculated by macro-averaging the corresponding class-wise F1 scores. * indicates availability of EDU-
level semantic information through the ensembling with ParSeq.

4.2 Training

We train all models with hyperparameter settings
consistent with that of ParSeq reported by (Lai and
Tetreault, 2018). Specifically, we use a learning
rate of 0.0001, hidden size of 100, relation embed-
ding size of 50, and 300-dimensional pre-trained
GloVe embeddings (Pennington et al., 2014). We
train with the Adam optimizer (Kingma and Ba,
2014) for 2 epochs. For every model/variation, the
reported results represent the corresponding accura-
cies and F1 scores averaged over 1000 independent
runs, each initialized with a different random seed.

4.3 RST-Recursive’s Performance

Our full model incorporates the RST Tree (T) struc-
ture, nucleus/satellite properties (nuclearity) of sub-
trees (NS), RST specific connective relations (R),
and EDU embeddings at leaves of the RST tree (E),
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as previously described in 3.1. Here, (T) defines
the tree traversal operation and (NS) and (R) are
learned vector embeddings for nuclearity and rela-
tions. We examine three ablations, each removing
one of (NS), (R) and (E) from the model.

The results are provided in Tables 1 and 2. As
shown, the complete model is able to achieve a
competitive overall accuracy and F1 at 53.04% and
44.30% respectively, which is close to the state
of the art. Although this lags behind ParSeq by
a noticeable 2% margin, RST-Recursive is able
to achieve this performance with 62% fewer pa-
rameters (1,230k vs. 3,241k), demonstrating the
usefulness of linguistically-motivated features. Re-
moving EDU embeddings reduces accuracy and
F1 scores to 50.46% and 39.13%. This is still sig-
nificantly better than the majority class baseline,
signifying that even without any semantic infor-
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Figure 5: Comparison of Recall, Precision and F1 on overall classification of each coherence level.

mation about the text and its contents, it is still
possible to evaluate coherence using just the silver-
standard RST features of the text. Removing RST
relations and nuclearity, however, decreases perfor-
mance substantially, dropping to the majority class
level. This indicates that an RST tree structure
alone (of the quality delivered by silver-standard
parsers) is not sufficient to classify coherence. It
must also be noted that since we employ silver-
standard RST parsing as performed by CODRA
(Joty et al., 2015), the reported results act as a
lower bound which we would expect to improve as
parsing quality increases.

4.4 Ensemble’s Performance

We examine three variations of the Ensemble. The
full model augments ParSeq with the text’s RST
tree, relations and nuclearity. This model is able
to achieve the new state of the art performance,
at 55.39% accuracy and 46.98% F1. Using final
layer concatenation for ensembling is widely ap-
plicable to many other neural methods, and serves
as a lower bound for the accuracy/F1 boost to be
appreciated by incorporating RST features into the
model. Removing the RST relations and/or nucle-
arity information completely eliminates the perfor-
mance gain, which shows that the RST tree on its
own is not sufficient as an RST source of infor-
mation for distinguishing coherence, even when
ensembled with ParSeq.

4.5 Classification Trends

As demonstrated in Figure 5, coherence classi-
fiers have difficulty predicting the neutral class
(2), experiencing modal collapse towards the ex-
treme ends in the best performing models. Early
experiments using alternative objective functions
such as the Ordinal Loss or Mean Squared Error
resulted in a similar modal collapse or poor over-
all performance. We leave further exploration of
this problem to future research. Furthermore, RST-
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Recursive shows a notably stronger recall on the
coherent class (3) as compared to ParSeq. On the
other hand, ParSeq has a higher recall/precision on
class (1) and slightly higher precision on class (3).
The Ensemble method, however, is able to take the
best of both, achieving better recall, precision and
F1 on both the incoherent and coherent classes as
compared to ParSeq.

5 Conclusions and Future Work

In this paper, we explore the usefulness of silver-
standard parsed RST features in neural coherence
classification. We propose two new methods, RST-
Recursive and Ensemble. The former achieves
reasonably good performance, only 2% short of
state of the art, while more robust with 62% fewer
parameters. The latter demonstrates the added ad-
vantage of RST features in improving classification
accuracy of the existing state of the art methods
by setting new state of the art performance with a
modest but promising margin. This signifies that
the document’s rhetorical structure is an impor-
tant aspect of its perceived clarity. Naturally, this
improvement in performance is bounded by the
quality of parsed RST features and could increase
as better discourse parsers are developed.

In the future, exploring other RST-based archi-
tectures for coherence classification, as well as bet-
ter RST ensemble schemes and improving RST
parsing can be avenues of potentially fruitful re-
search. Additional research on multipronged ap-
proaches that draw from Centering Theory, RST
and deep learning all together can also be of value.
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Appendices

A Dataset Description

For model evaluation, we use the recently released
Grammarly Corpus for Discourse Coherence (Lai
and Tetreault, 2018). GCDC consists of 4 sections
- Clinton and Enron emails, as well as Yelp review
and Yahoo answers, with 1000 training and 200
testing examples in each section. Each text is given
a score from 1 (least coherent) to 3 (most coherent)
by expert raters. GCDC'’s key advantage, compared
to the ranking corpora used in the past (Prasad et al.,
2008), is that all the datapoints are human-labelled
and not artificially permuted. Examples from the

Coherence / Example

Incoherent (1)

For good Froyo, you just got to love some MoJo, yea baby
yea! Creamy goodness with half the guilt of ice cream,
a spread of tasty toppings, this in the TMP in definitely
the place to be! They have little cups for sampling to
find your favorite flavor. Great prices and with a yelping
good 25% off discount just for “checking in” and half
off Tuesdays with the FB word of the day, you just can’t
beat it! Perfect summer treat located in front of the TMP
splash pad, you can soak up some sun and enjoy some
fromazing yogurt in their outdoor sitting area! Go get
you some Mojo froyo!

Neutral (2)

So Spintastic gets 5 stars because it’s about as good as it
gets for a laundromat, me thinks.

Came here bc the dryer at my place was busted and wait-
ing on the repairman. I found the people working the
place extremely helpful. It was my first time there and
she walked me through the steps of how to get a card,
which machines to use, where I could buy the soap... only
thing she didn’t do was fold my dried laundry! Heh.
Will remember this place for the future in the event that
I need to get my clothes washed and ready. Free wi-fi
and a soda machine is convenient. Oh and if you have a
balance left on your card, you can redeem the card and
any remaining balance if you like.

dmo out

Coherent (3)

vet for almost 6 years. He is kind, compassionate and
very loving and gentle with my dogs. All my dogs are
shelter dogs and I am very picky about who cares for my
animals.

I walked in once with a dog I found running around the
neighborhood and the staff could not find a chip so Dr.
Besemer came out to help. He was busy but made time
for me. He looked over the dog and could not find a chip,
he also did a quick check on the dog and said that he
appeared healthy. He didn’t charge me for his time. This
dog became my third adoped dog. Dr. Besemer is the
best and I highly recommend him if you are looking for a
vet. His staff is kind and compassionate.

Table 3: Text examples of incoherent (class 1), neutral
(class 2), and coherent (class 3) snippets from the Yelp
subset of the GCDC dataset (Lai and Tetreault, 2018).

Parser Structure  Nuclearity — Relation  Full
CODRA 82.6 68.3 55.8 55.4
Human 88.3 71.3 65.4 64.7

Table 4: Micro-averaged F1 scores on the RST parsing
of text by CODRA vs. Human Standard (Morey et al.,
2017).

dataset are provided in Table 3. When assigning
the ranking to each text, the experts received the
following instructions (Lai and Tetreault, 2018):

A text that is highly coherent (score 3) is easy to
understand and easy to read. This usually means
the text is well-organized, logically structured, and
presents only information that supports the main
idea. On the other hand, a text with low coherence
(score 1) is difficult to understand. This may be
because the text is not well organized, contains
unrelated information that distracts from the main
idea, or lacks transitions to connect the ideas in
the text. Try to ignore the effects of grammar or
spelling errors when assigning a coherence rating.

We generated a discourse tree for each text in
the GCDC dataset, utilizing the available CODRA
discourse parser (Joty et al., 2015). Early iterations
resulted in up to 30% unsuccessful parsing rate on
some sub-datasets. As a result, a punctuation fix-
ing script was developed to fix minor punctuation
problems without changing the text’s structure or
coherence. Post-fixing results lowered this RST
parsing failure rate to reasonable margins in the
1% to 3% region (see Table 5). Note that all exam-
ples for which RST parsing was not successfully
performed were excluded in our experiments. All
baselines were re-evaluated using the RST-parsed
set of examples.

B CODRA Quality

While partial parsing of the dataset (see Appendix
A) allows us to evaluate the accuracy of our mod-
els, it must be emphasized that as with the goal of
this paper, we’ve used silver-standard RST parsing
which lags well behind the human gold-standard.
As shown in Table 4, CODRA is far from reaching
human-level accuracy in RST parsing. Addition-
ally, since it was trained on RST-DT (Carlson et al.,
2002), it lacks out-of-domain adaptability, which
becomes a bottle-neck in achieving substantial per-
formance boost on badly structured domains of
text such Yelp review. We again re-iterate the im-
portance of RST parsing for RST-based coherence
evaluation, and motivate future work in this area.
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TRAIN TEST

CLINTON ENRON YAHOO YELP \ CLINTON ENRON YAHOO YELP
EXAMPLES 1000 1000 1000 1000 200 200 200 200
PRE-F1X RST-TREES 667 710 940 950 136 142 188 190
POST-Fix RST-TREES 985 976 986 999 199 195 192 197
POST-F1X VERY COHERENT 503 499 368 511 109 87 73 109
POST-FIX MEDIUM COHERENT 204 192 170 218 38 50 41 42
POST-F1X INCOHERENT 277 289 442 270 50 59 78 47

Table 5: Number of examples for which RST trees were successfully produced in each GCDC sub-dataset.

We believe that improvements in RST parsing will
result in better accuracy for both future and existing

RST-based coherence evaluation methods.
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