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Abstract

This work studies the widely adopted ancestral
sampling algorithms for auto-regressive lan-
guage models, which is not widely studied in
the literature. We use the quality-diversity (Q-
D) trade-off to investigate three popular sam-
pling algorithms (top-k, nucleus and tempered
sampling). We focus on the task of open-ended
language generation. We first show that the
existing sampling algorithms have similar per-
formance. After carefully inspecting the trans-
formations defined by different sampling algo-
rithms, we identify three key properties that
are shared among them: entropy reduction, or-
der preservation, and slope preservation. To
validate the importance of the identified prop-
erties, we design two sets of new sampling al-
gorithms: one set in which each algorithm sat-
isfies all three properties, and one set in which
each algorithm violates at least one of the prop-
erties. We compare their performance with ex-
isting sampling algorithms, and find that vio-
lating the identified properties could lead to
drastic performance degradation, as measured
by the Q-D trade-off. On the other hand, we
find that the set of sampling algorithms that sat-
isfies these properties performs on par with the
existing sampling algorithms.1

1 Introduction

A language model (LM) is a central module for nat-
ural language generation (NLG) tasks (Young et al.,
2018) such as machine translation (Wu et al., 2018),
dialogue response generation (Li et al., 2017), im-
age captioning (Lin et al.), and related tasks. Given
a trained LM, finding the best way to generate a
sample from it has been an important challenge for
NLG applications.

∗Equal contribution.
1Our data and code are available at

https://github.com/moinnadeem/
characterizing-sampling-algorithms.

Figure 1: Human evaluation (y-axis: quality, x-axis:
diversity, both are the bigger the better) shows that
the generation performance of existing sampling algo-
rithms are on par with each other.

Decoding, i.e., finding the most probable output
sequence from a trained model, is a natural prin-
ciple for generation. The beam-search decoding
algorithm approximately finds the most likely se-
quence by performing breadth-first search over a
restricted search space. It has achieved success
in machine translation, summarization, image cap-
tioning, and other subfields.

However, in the task of open-ended language
generation (which is the focus of this work), a sig-
nificant degree of diversity is required. For ex-
ample, conditioned on the prompt “The news
says that ...”, the LM is expected to be able
to generate a wide range of interesting continua-
tions. While the deterministic behavior of decoding
algorithms could give high-quality samples, they
suffer from a serious lack of diversity.

This need for diversity gives rise to a wide adop-
tion of various sampling algorithms. Notably, top-
k sampling (Fan et al., 2018), nucleus sampling
(Holtzman et al., 2020), and tempered sampling
(Caccia et al., 2020) have been used in open-ended

https://github.com/moinnadeem/characterizing-sampling-algorithms
https://github.com/moinnadeem/characterizing-sampling-algorithms
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generation (Radford et al., 2018; Caccia et al.,
2020), story generation (Fan et al., 2018), and di-
alogue response generation (Zhang et al., 2020b).
However, the sampling algorithm and the hyper-
parameter are usually chosen via heuristics, and a
comprehensive comparison between existing sam-
pling algorithm is lacking in the literature. More
importantly, the underlying reasons behind the
success of the existing sampling algorithms still
remains poorly understood.

In this work, we begin by using the quality-
diversity (Q-D) trade-off (Caccia et al., 2020) to
compare the three existing sampling algorithms.
For automatic metrics, we use the BLEU score
for quality and n-gram entropy for diversity. We
also correlate these automatic metrics with human
judgements. The first observation we draw is that
top-k , nucleus and tempered sampling perform
on par in the Q-D trade-off, as shown in Figure 1.
Motivated by this result, we extract three key prop-
erties by inspecting the transformations defined by
the sampling algorithms: (1) entropy reduction, (2)
order preservation and (3) slope preservation. We
prove all three properties hold for the three existing
sampling algorithms.

We then set out to systematically validate the
importance of the identified properties. To do so,
we design two sets of new sampling algorithms
in which each algorithm either violates one of the
identified properties, or satisfies all properties. Us-
ing the Q-D trade-off, we compare their efficacy
against existing algorithms, and find that violating
these identified properties could result in signifi-
cant performance degradation. More interestingly,
we find that the set of sampling algorithms that sat-
isfies these properties has generation performance
that matches the performance of existing sampling
algorithms.

2 Sampling Algorithms for
Autoregressive Language Models

2.1 Autoregressive Language Modeling

The task of autoregressive language modeling is to
learn the probability distribution of the (l + 1)-th
word Wl+1 in a sentence W conditioned on the
word history W1:l := (W1, . . . ,Wl) and context C.
Here, we use Wi ∈ V to denote a discrete random
variable distributed across a fixed vocabulary V .
In this work, the vocabulary is constructed on sub-
word level (Sennrich et al., 2016).

Given a training set D, maximum likelihood es-

timation (MLE) has been the most popular frame-
work to train an autoregressive LM (Mikolov et al.,
2010). MLE training minimizes the negative log-
likelihood (NLL) objective below:

LMLE =
1

|D|
∑

(W,C)∈D

−ΣL−1
l=0 logPθ(Wl+1|W1:l, C),

(1)

where θ denotes model parameters, and Pθ(· |W1:l)
denotes the conditional model distribution of Wl+1

given a prefix W1:l. For simplicity, we assume all
sentences are of lengthL in the formulations. Since
this work focuses on sampling from a given model
instead of training it, in the rest of the paper, we
abbreviate Pθ(·) as P (·) for brevity.

2.2 Existing Sampling Algorithms

Given a trained LM and a context C, an ancestral
sampling algorithm seeks to generate a sequence
from P (W |C) by sampling token-by-token from a
transformed version of P (Wl+1|W1..l, C). We now
review and formulate three popular sampling algo-
rithms: top-k (Fan et al., 2018), nucleus (Holtzman
et al., 2020), and tempered (Ackley et al., 1985;
Caccia et al., 2020) sampling.

We view these algorithms as different
transformations applied to the distribution
P (Wl+1|W1..l, C). First, we treat the conditional
distribution P (Wl+1|W1..l, C) as a sorted vector
p of length |V |. By sorting, we rearrange the
elements such that if i < j → pi >= pj .2 We list
the transformations and their intuition below:

Definition 2.1. (Top-k) In top-k sampling, we
only sample from the top K tokens:

p̂i =
pi · 1{i ≤ K}∑K

j=1 pj
, (2)

where 1 is the indicator function, andK (1 ≤ K ≤
|V |) is the hyperparameter.

Definition 2.2. (Nucleus) With a hyperparameter
P (0 < P ≤ 1), in nucleus sampling, we sample
from the top-P mass of p:

p̂i =
p′i∑|V |
j=1 p

′
j

, (3)

where p′i = pi · 1{
∑i−1

j=1 pj < P}.
2The token indexes are also permutated accordingly.
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Definition 2.3. (Tempered) In tempered sampling,
the log probabilities are scaled by 1

T :

p̂i =
exp(log(pi)/T )∑|V |
j=1 exp(log(pj)/T )

. (4)

In this work, we assume 0 < T < 1, i.e., the
distribution is only made sharper3.

We additionally experiment with a combined
version of top-k and tempered sampling:

Definition 2.4. (Tempered Top-k) We combine
the transformation defined by top-k and tempered
sampling:

p̂i =
p′i∑|V |
j=1 p

′
j

, (5)

where p′i = exp(log(pi)/T ) · 1{i ≤ K}. We set
1 ≤ K ≤ |V | and 0 < T < 1.

Throughout this work we use p̂ to denote the
normalized version of the transformed distribution.
All algorithms have hyperparameters to control the
entropy of the transformed distribution. For ex-
ample, K in top-k sampling controls the size of
the support of the resulting distribution. We will
formalize this statement in Property 1 below.

3 Properties of Sampling Algorithms

As we will show in Section 5.1 (also Figure 1),
top-k, nucleus and tempered sampling perform on
par with each other under our evaluation. This key
observation makes us question: What are the core
principles underlying the different algorithms that
lead to their similar performance?

To answer this question, in this section, we iden-
tify three core properties that are provably shared
by the existing sampling algorithms. We then de-
sign experiments to validate their importance.

3.1 Identifying Core Properties

By inspecting the transformations listed in Defini-
tion 2.1, 2.2 and 2.3, we extract the following three
properties:

Property 1. (Entropy Reduction): The transfor-
mation strictly decrease the entropy of the distri-
bution. Formally, H(p̂) < H(p), where H(p) =
−
∑|V |

i=1 pi log pi.
3One could also use T > 1, but it does not work well in

practice.

Property 2. (Order Preservation): The order of
the elements in the distribution is preserved. For-
mally, pi ≥ pj → p̂i ≥ p̂j .
Property 3. (Slope Preservation): The “slope”
of the distribution is preserved. Formally, ∀p̂i >
p̂j > p̂k > 0 (i.e., they are not truncated), we have
log pi−log pj
log pj−log pk =

log p̂i−log p̂j
log p̂j−log p̂k .

The order preservation property implies that trun-
cation can only happen in the tail of the distribu-
tion, which aligns with top-k and nucleus sampling.
The slope preservation property is stronger than
the order preservation property in that not only the
ordering, but also the relative magnitude of the el-
ements in the distribution needs to be somewhat
preserved by the transformation.

All these three properties are shared by the three
existing sampling algorithms:

Proposition 1. Property 1, 2 and 3 hold for the top-
k, nucleus and tempered sampling transformations
formulated in Definitions 2.1, 2.2 and 2.3.

Proof. See Appendix B.

We then set out to validate the importance of
these identified properties in the aspects of neces-
sity and sufficiency. To do so, we design two sets of
new sampling algorithms in which each algorithm
either violates one of the identified properties, or
satisfies all properties. We list them in the next
section.

3.2 Designed Sampling Algorithms
Property-violating algorithms To validate the
necessity of each property, we design several sam-
pling algorithms which violate at least one of the
identified properties. In our experiments, we check
whether that violation leads to a significant degra-
dation in performance. We list them below:

Definition 3.1. (Target Entropy) Based on tem-
pered sampling, target entropy sampling tunes the
temperature t such that the transformed distribution
has entropy value equal to the hyperparameter E
(0 < E ≤ log |V |). We formulate it below:

p̂i =
exp(log(pi)/t)∑|V |
j=1 exp(log(pj)/t)

, (6)

where t is selected such that H(p̂) = E.

Target entropy sampling violates entropy reduc-
tion, because when H(p) < E, the entropy will be
tuned up (i.e., H(p̂) > H(p)).
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Definition 3.2. (Random Mask) In random mask
sampling, we randomly mask out tokens in the
distribution with rate R. We formluate it below:

p̂i =
p′i∑|V |
j=1 p

′
j

, (7)

where p′i = pi · 1{i = 1 or ui > R} and
ui ∼ U(0, 1). The hyperparameter R (0 < R ≤ 1)
controls the size of the support of the resulting dis-
tribution. In Appendix A, we show it is crucial that
the token which is assigned the largest probability
(p1) is never be masked.

Random mask sampling is different from top-k
or nucleus sampling in that the masking not only
happens in the tail of the distribution. Therefore, it
violates the order preservation property.

Definition 3.3. (Noised Top-k) We add a sorted
noise distribution to the result from top-K transfor-
mation, and the weight of the noise distribution is
controlled by a hyperparameter W (0 ≤ W ≤ 1).
We formulate it below:

p̂ = (1−W )p̂top-K +Wpnoise-K, (8)

where pnoise-K is a uniformly sampled sorted K-
simplex, which satisfies

∑K
i=1 p

noise-K
i = 1 and i <

j → pnoise-K
i ≥ pnoise-K

j ≥ 0.

The sorted nature of the noise distribution
pnoise-K maintains order preservation. However,
it violates slope preservation, and the noise weight
W controls the degree of the violation.

Property-satisfying algorithms To validate the
sufficiency of the identified properties, we design
two new sampling algorithms for which all three
properties hold. And in our experiments we check
whether their performance is on par with the exist-
ing sampling algorithms. We list them below:

Definition 3.4. (Random Top-k) We design a ran-
domized version of top-k sampling: At each time
step, we sample a uniformly random float number
u ∼ U(0, 1), and use it to specify a top-k trunca-
tion:

p̂i =
pi · 1{i ≤ k}∑k

j=1 pj
, (9)

where k = b1 +M · uc. The hyperparameter M
(1 ≤M < |V |) controls the maximum truncation
threshold.

Definition 3.5. (Max Entropy) Max entropy sam-
pling is similar to target entropy sampling (Def-
inition 3.1). However to match entropy reduc-
tion (Property 1), we only tune the temperature
when H(p) > E, where E is the hyperparameter
(0 < E ≤ log |V |):

p̂i =


exp(log(pi)/t)∑|V |
j=1 exp(log(pj)/t)

, ifH(p) > E

pi, otherwise
,

(10)
where t is selected so thatH(p̂) = E.

It is easy to prove that Property 1, 2, and 3 holds
for the transformations defined by random top-k
and max entropy sampling, and we omit the proof
for brevity.

4 Experiment Setup

In this section, we first establish evaluation proto-
cols, and then describe the model and data we use
for the open-ended language generation task.

4.1 Evaluation via the Q-D Trade-off

How to efficiently measure the generation perfor-
mance of a NLG model has been an important open
question. Most existing metrics either measure the
quality aspect (e.g. BLEU score) or the diversity
(e.g. n-gram entropy) aspect. To make the situation
more complicated, each sampling algorithm has its
own hyperparameters which controls the trade-off
between quality and diversity.

To address the challenges above, we adopt the
quality-diversity trade-off proposed by Caccia et al.
(2020). In the Q-D trade-off, we perform a fine-
grained sweep of hyperparameters for each sam-
pling algorithm, and compute the quality and diver-
sity score for each configuration. We report two
pairs of Q/D metrics, with one pair using automatic
evaluation and the other using human evaluation.
In the next two sections, we describe the metrics
we use, and refer readers to Caccia et al. (2020) for
more intuition behind the Q-D trade-off.

4.1.1 Automatic Evaluation
For automatic metrics, we adopt the corpus-BLEU
(Yu et al., 2016) metric to measure quality and the
self-BLEU (Zhu et al., 2018) metric to measure
diversity. We formulate them below.

Given a batch of generated sentences Sgen and
a batch of sentences from ground-truth data as
references Sref, corpus-BLEU returns the average
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BLEU score (Papineni et al., 2002) of every model
generated sentence against the reference set:

corpus-BLEU(Sgen, Sref) =
1

|Sgen|
∑

W∈Sgen

BLEU(W,Sref).

(11)

A higher corpus-BLEU score means that the gen-
erated sequences has better quality in that it has
higher ngram-level overlap with the reference data.
Based on the same intuition, we define the self-
BLEU metric to quantify the diversity aspect:

self-BLEU(Sgen) = corpus-BLEU(Sgen, Sgen), (12)

where a lower self-BLEU score means that the
samples have better diversity.

In our experiments, we feed the first ten sub-
words of every sample from test set to the model,
and compare the model-generated sequences to the
reference samples in the validation set. We use
10,000 samples to compute corpus-BLEU or self-
BLEU, i.e., |Sgen| = |Sref| = 10, 000.

Automatic evaluation enables us to do a fine-
grained sweep of the hyperparameters for each sam-
pling algorithm, and compare them in the quality-
diversity trade-off. However, observations from
automatic evaluation could be misaligned with hu-
man evaluation (Belz and Reiter, 2006). Therefore,
we confirm our key observations with human eval-
uation.

4.1.2 Human Evaluation
Quality We ask a pool of 602 crowdworkers on
Amazon Mechanical Turk to evaluate various sam-
pling configurations in the quality aspect. Each
worker is presented a set of ten samples along with
the prompts (prefixes). They are then asked to rate
how likely the sentence would appear in a news
article between 0 and 5 (Invalid, Confusing, Un-
specific, Average, Expected, and Very Expected
respectively).

We focus on the Gigaword dataset for human
evaluation since news articles are ubiquitous and
do not often require expert knowledge for qual-
ity judgement. For each configuration (sampling
algorithm and hyperparameter pair) we ask crowd-
workers to rate 200 samples in total. To get an
accurate rating for each sample, we enlist 25 differ-
ent crowdworkers to rate each sample. We report
mean and standard deviation from 5 independent
runs (each with 40 samples) as error bar.

By manual inspection, we find that the time spent
in the annotations is a good indicator of the quality

of the rating. Therefore, we estimate the human
judgement score for a sample as the average rating
of the 20 crowdworkers (out of 25) who took the
most time to rate the samples. We provide further
details about our setup in Appendix C and D.

Diversity It is difficult for human annotators
to estimate diversity of text (Hashimoto et al.,
2019). Therefore, we use the n-gram entropy met-
ric (Zhang et al., 2018; He and Glass, 2019) . Given
Sgen which contains a large number of samples, we
measure its diversity using the following formula-
tion:

Hn-gram(Sgen) =
∑
g∈Gn

−r(g) log r(g), (13)

where Gn is the set of all n-grams that appeared
in Sgen, and r(g) refers to the ratio (frequency) of
n-gram g w.r.t. all n-grams in the Sgen. For the
estimation of n-gram entropy, we generate 50,000
samples from each sampling configuration.

We will report human quality score either paired
with n-gram entropy or with self-BLEU as diversity
metric. We find they give similar observations.

4.2 Model and Datasets
We separately fine-tune GPT2-small (Radford et al.,
2018; Wolf et al., 2019) (110M parameters) on
the Gigaword (Graff et al., 2003; Napoles et al.,
2012) and the Wikitext-103 (Merity et al., 2017)
datasets. We use the same tokenization as GPT-2,
and add additional padding and end-of-sequence
tokens ([EOS]) to the sentences.

To generate a sequence, we feed a length-10 pre-
fix from test data into the fine-tuned GPT-2 model,
and use a sampling algorithm to complete the sen-
tence. Since shorter samples are more difficult to
judge in quality (Ippolito et al., 2020), we filter all
generated sentence completions to be between 40
and 50 subwords, and filter our validation and test
set to meet the same requirements. To permit vali-
dation and test sets that are large enough to prefix
10,000 sentences for the corpus-BLEU metric, we
re-chunk the first 80% of the Gigaword dataset for
the training set, 15% for validation, and the last 5%
for the test set. Similarly, we re-chunk the first 97%
of the Wikitext-103 dataset for training, and leave
1.5% for validation and 1.5% for test.

5 Empirical Results

First, we compare existing sampling algorithms,
and then move on to validate the necessity and
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Figure 2: The performance (x-axis: quality, y-axis: di-
versity, both are the smaller the better) of top-k, nu-
cleus, tempered and tempered top-k sampling are on
par on the Gigaword dataset, as shown by automatic
evaluation.

sufficiency of the identified properties.

5.1 Comparison of Existing Algorithms
We compare top-k, nucleus, and tempered sam-
pling via automatic and human evaluation. We do
a fine-grained sweep of hyperparameters for each
sampling algorithm on the Gigaword dataset. The
results are shown in Figure 1 (human evaluation)
and Figure 2 (automatic evaluation). We also show
the quality and diversity score for human text in
the test data for reference, which is labeled as gold.

Both automatic and human evaluations demon-
strate that the performance of top-k, nucleus and
tempered sampling are on par with each other, with
no significant gap. When the hyperparameters (K,
P and T ) are tuned so that different sampling has
the same diversity (measured by self-BLEU or n-
gram entropy), their quality (measured by corpus-
BLEU or human rating) are close.

Additionally, we compare tempered top-k sam-
pling with the existing algorithm also in Figure 2.
We find that adding the tempered transformation
only moves top-k sampling along the Q-D trade-
off, instead of yielding a better or a worse sampling
algorithm. For example, the performance of the
K = 500, T = 0.8 configuration for tempered
top-k sampling is very close to the K = 30 config-
uration for the top-k sampling.

Motivated by these observations, we identify
three core properties (elaborated in Section 3.1)
that are shared among the sampling algorithms:
entropy reduction, order preservation and slope
preservation. In the following two sections, we

Figure 3: Automatic evaluation of the noised top-k,
target entropy, and random mask sampling proposed
to validate the necessity of the identified properties.
The results show that violation of entropy reduction
and slope preservation could lead to drastic perfor-
mance degradation, while the order preservation prop-
erty could be further relaxed.

present experiments validating the necessity or suf-
ficiency aspect of the properties.

5.2 Property-violating Algorithms

In Figure 3, we compare the generation perfor-
mance of the property-violating sampling algo-
rithms (designed in Section 3.2), against the ex-
isting algorithms using automatic evaluation on the
Gigaword dataset. We make the following obser-
vations: First, the target entropy sampling, which
violates entropy reduction, has significantly worse
performance; Second, even with small noise weight
W , the performance of noised top-k sampling de-
grades from the original top-k sampling, and the
gap becomes larger as W increases; Last, the ran-
dom mask sampling is on par with the existing
sampling algorithms in performance. We further
confirm this observation with human evaluation in
Figure 5.

These results suggest that the violation of en-
tropy reduction or slope preservation could lead
to drastic performance degradation. On the other
hand, the competitive performance of random mask
sampling suggests that order preservation could be
further relaxed.

In the next section, we investigate the sufficiency
aspect of the identified properties.

5.3 Property-satisfying Algorithms

We now compare the generation performance of
the property-satisfying sampling algorithms (de-
signed in Section 3.2) with the existing sampling
algorithms. The results from the Gigaword dataset
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Sampling Conditional Samples
Existing Sampling Algorithms

Top-k
(K = 30)

steven spielberg’s dreamworks movie studio said monday it was filing a lawsuit, accusing us studio
executives of defrauding hundreds of thousands of dollars in refunds and other damages.

Nucleus
(P = 0.80)

steven spielberg’s dreamworks movie studio has failed to attract the kind of business and development
investors that jeffrey hutchinson dreamed up in the past.

Tempered
(T = 0.85)

steven spielberg’s dreamworks movie studio plans to spend the rest of the year producing the high-speed
thriller ”the earth’s path” and an upcoming sequel, the studio announced on wednesday.

Property-satisfying Sampling Algorithms
Random Top-k
(R = 90)

steven spielberg’s dreamworks movie studio is planning to make a movie about a young man who is a
<unk>, a man who has a dream of being the first man to be born with the ability to walk on water.

Max Entropy
(E = 2.75)

steven spielberg’s dreamworks movie studio has agreed to pay $ #.# million to director john nichols (£
#.# million, ###, a record in the studio circulation ), the studio announced sunday..

Property-violating Sampling Algorithms
Random Mask
(R = 0.75)

steven spielberg’s dreamworks movie studio scored a big win with a $ ##.# million ( euro ##.# million )
direct-to-video ( dvds ) deal to develop the #### short story ”the rose garden”.

Noised Top-k
(K=50, W=5e-3)

steven spielberg’s dreamworks movie studio is in disarray and has a few directors and a lot of stock
involved, leaving it only a matter of time before spielberg’s departure from the nobel peace prize.

Target Entropy
(E = 2.75)

steven spielberg’s dreamworks movie studio production scored an action boost m boom, nabbing an ’d
after the ##th instal specialization with nominations of fritz, ika, ivan english ape and evlyn mcready.

Table 1: Generated sequences with the same prefix steven spielberg’s dreamworks movie studio by different sam-
pling algorithms. The hyperparameters are chosen such that the algorithms yield roughly the same diversity mea-
sured by self-BLEU. The poor-quality spans are higlighted in red.

Figure 4: The proposed random top-k and max entropy
schedulers, which meet the identified properties, are on
par in performance with existing methods in automatic
evaluation on the Gigaword dataset.

are shown in Figure 3 (for automatic evaluation)
and Figure 5 (for human evaluation). For complete-
ness, we also replicate Figure 5 with self-BLEU
as the diversity measure in Appendix F. We also
present results from automatic evaluation on the
Wikitext-103 dataset in Figure 6, with consistent
observations.

The evaluations consistently show that the perfor-
mance of random top-k and max entropy sampling
(and random mask sampling in last section) is on
par with top-k, nucleus, and tempered sampling.
These results strengthen the importance of the iden-

Figure 5: Human evaluation also shows that the pro-
posed sampling algorithms has performance on par
with the existing methods on the Gigaword dataset. Ap-
pendix F repeats this plot with self-BLEU.

tified properties in that, new sampling algorithms
could get competitive generation performance as
long as they meet the identified properties.

5.4 Qualitative Analysis

We list samples from the proposed sampling algo-
rithms and compare them with the existing ones
in Table 1. We choose the hyperparameter of each
sampling algorithm so that each algorithm exhibits
a similar level of diversity (as measured by self-
BLEU). By manual inspection, we find that the
quality of samples from property-satisfying sam-
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Figure 6: Automatic evaluation on the Wikitext-103
dataset: The performance of proposed sampling algo-
rithms are on par with top-k, nucleus, and tempered
sampling.

pling algorithms is on par with samples from the
existing algorithms. In particular, the samples from
random top-k, max entropy, and random masked
sampling are all coherent and informative.

In contrast, the samples from noised top-k and
target entropy algorithms, tend to be less seman-
tically and syntatically coherent. In particular,
the target entropy sampling algorithm, which ob-
tains the lowest quality score measured by corpus-
BLEU, lacks basic language structure. In compar-
ison to target entropy, noised top-k is syntatically
coherent, but exhibits logical and factual inconsis-
tencies. These observations aligns with the results
we get from automatic evaluation.

6 Related Works

Despite the popularity of sampling algorithms in
natural language generation, a rigorous compari-
son or scrutiny of existing algorithms is lacking
in the literature. Ippolito et al. (2019) provides a
comparison between sampling and decoding algo-
rithms. Holtzman et al. (2020) proposes nucleus
sampling, and compare it with top-k sampling (Fan
et al., 2018). However, only a few hyperparame-
ter configurations are tested. In Hashimoto et al.
(2019) and Caccia et al. (2020), temperature sam-
pling is used and the hyperparameter T is tuned
to trade-off between diversity and quality, but it
lacks comparisons with other sampling algorithms.
Welleck et al. (2020) studies the consistency of ex-
isting sampling and decoding algorithms, without
comparing the generation performance.

In this work we mainly use the quality-diversity
trade-off (Caccia et al., 2020) to conduct a compar-

ison of different sampling algorithms. Parallel to
our work, Zhang et al. (2020a) also uses the quality-
diversity trade-off to compare top-k, nucleus, and
tempered sampling. Their observation is similar to
ours: The performance of the existing algorithms
are close with no significant gap.

More importantly, the underlying reasons for
the success of various sampling algorithms remain
poorly understood. Zhang et al. (2020a) proposes
the selective sampling algorithm, which fails to out-
perform existing approaches. This failed attempt
suggests the need for a better understanding of the
strengths and weaknesses of existing methods. To
the best of our knowledge, our work provides the
first systematic characterization of sampling algo-
rithms, where we attribute the success of existing
sampling algorithms to a shared set of properties.
We show that we can propose novel sampling algo-
rithms based on the identified properties, and reach
competitive generation performance as measured
by both automatic and human evaluation.

7 Limitations and Future Work

Our core contribution is the three properties of sam-
pling algorithms that we conjecture are crucial for
competitive generation performance. While we
design a set of experiments to validate their ne-
cessity and sufficiency, the observations we make
are still empirical. We emphasize that it is com-
pletely possible that there exists some crucial
property, that is yet to be discovered, and can
lead to significantly better generation perfor-
mance. Therefore, the exploration of novel sam-
pling algorithms (Zhang et al., 2020a) should still
be encouraged.

On the other hand, to provide a comprehensive
study, we focus on the open-ended language gener-
ation task with the GPT-2 model. As future work, it
would be interesting to check whether our observa-
tions also hold on other tasks such story generation
or dialogue response generation, or with weaker
language models in low-resource setting.

8 Conclusion

This work studies sampling algorithms for the open-
ended language generation task. We show that the
existing algorithms, namely top-k, nucleus, and
tempered sampling, have similar generation perfor-
mance as measured by the quality-diversity trade-
off evaluation. Motivated by this result, we identify
three key properties that we prove are shared by
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the existing algorithms. To validate the importance
of these identified properties, we design a set of
new sampling algorithms, and compare their perfor-
mance with the existing sampling algorithms. We
find that violation of the identified properties may
lead to drastic performance degradation. On the
other hand, we propose several novel algorithms,
namely random top-k and max entropy sampling,
that meet the identified properties. We find that
their generation performance is on par with the
existing algorithms.
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A Auxiliary Plots

We show the importance of preserving the token
with the largest probability (p1) in the proposed
random mask sampling. For comparison, we re-
lax the constraint and define the random mask-all
sampling:
Definition A.1. (Random Mask-all) The only dif-
ference between random mask-all sampling and
random mask sampling is that we allow the p1 to-
ken to be masked. We formulate it below:

p̂i =
p′i∑|V |
j=1 p

′
j

, (14)

where p′i = pi · 1{ui > R} and ui ∼ U(0, 1).
In Figure 7, we show that if p1 is allowed to

be masked, the generation performance will be
seriously degraded.

Figure 7: The random mask-all sampling, where p1 is
allowed to be masked, is shown to have worse perfor-
mance than the random mask sampling. The dataset is
Giagword.

B Proof for Proposition 1

In this section we prove Proposition 1.
Firstly, it is straightforward to prove that Prop-

erty 2 (order preservation) holds for the top-k, nu-
cleus and tempered sampling and we omit the proof
here.

For Property 3 (slope preservation), it holds triv-
ially for nucleus and top-k sampling. We prove it
for tempered sampling in the following lemma:
Lemma B.1. Property 3 holds for tempered sam-
pling (Definition 2.3).

Proof. Remember that the tempered sampling with
hyperparameter T defines the follow transforma-
tion: p̂i =

p′i∑
j p
′
j
, where p′i = exp(log(pi)/T ) .

We set Z =
∑

j p
′
j , then ∀p̂i > p̂j > p̂k > 0 we

have

log p̂i − log p̂j
log p̂j − log p̂k

=
log p′i − logZ − log p′j + logZ

log p′j − logZ − log p′k + logZ

=
log p′i − log p′j
log p′j − log p′k

(logZ is cancelled)

=
log(pi)/T − log(pj)/T

log(pj)/T − log(pk)/T

=
log(pi)− log(pj)

log(pj)− log(pk)

(15)

Only Property 1 (entropy reduction) is left. We
now prove it holds for top-k / nucleus sampling:

Lemma B.2. Property 1 holds for transformations
defined by top-k or nucleus sampling (Definition
2.1 and 2.2).

Proof. We first consider the change of entropy
when the token with the smallest probability (p|V |)
is removed from the original distribution (p̂i =

pi∑|V |−1
j=1 pi

, 1 ≤ i < |V |):

−H(p) =

V∑
i=1

pi log pi

=

V−1∑
i=1

pi log pi + p|V | log p|V |

= (1− p|V |)
V−1∑
i=1

pi
1− p|V |

log pi + p|V | log p|V |

=

V−1∑
i=1

pi
1− p|V |

log
pi

1− p|V |
+ log(1− p|V |)︸ ︷︷ ︸

<0

+ p|V |

log p|V | −
V−1∑
i=1

pi
1− p|V |

log pi



<

V−1∑
i=1

p̂i log p̂i + p|V |

log p|V | −
V−1∑
i=1

pi
1− p|V |

log pi︸︷︷︸
>p|V |



<

V−1∑
i=1

p̂i log p̂i + p|V |

log p|V | −
V−1∑
i=1

pi
1− p|V |

log p|V |︸ ︷︷ ︸
=log p|V |


=

V−1∑
i=1

p̂i log p̂i = −H(p̂)

(16)

Therefore, we getH(p̂) < H(p).
By induction (iteratively removing the last to-

ken), it is now easy to see that the top-k or nucleus
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transformation strictly decrease the entropy of the
sampling distribution.

Finally, we prove Property 1 (entropy reduction)
holds for tempered sampling:

Lemma B.3. Property 1 holds for the transforma-
tion defined by tempered sampling (Definition 2.3).

Proof. For convenience, we first rewrite the Tem-
perature transformation:

p̂i = pαi =
exp(−αei)∑
j exp(−αej)

(17)

where ei = − log(pi) and α = 1
T . The entropy can

be written as:

H(pα) = −
∑
i

exp(−αei)∑
j exp(−αej)

log
exp(−αei)∑
j exp(−αej)

= log
∑
j

exp(−αej) + α
∑
i

ei
exp(−αei)∑
j exp(−αej)

(18)

Next, we take derivative w.r.t α:

∂H
∂α

= −
∑
i

ei
exp(−αei)∑
j exp(−αej)

+
∑
i

ei
exp(−αei)∑
j exp(−αej)︸ ︷︷ ︸

=0

+ α
∂

∂α

∑
i

ei
exp(−αei)∑
j exp(−αej)

= α
∑
i

ei

[
∂

∂α
log

exp(−αei)∑
j exp(−αej)

][
exp(−αei)∑
j exp(−αej)

]
︸ ︷︷ ︸

log-derivative trick

= α
∑
i

ei

−ei +
∑
j′

ej′
exp(−αei)∑
j exp(−αej)


[

exp(−αei)∑
j exp(−αej)

]
= −αEpα

[
e2i − eiEpα [ei]

]
= − α︸︷︷︸

>0

(
Epα [e2i ]− Epα [ei]

2
)

︸ ︷︷ ︸
=Varpα [ei]≥0

< 0
(19)

We can now easily get ∂H∂T = ∂H
∂α

∂α
∂T > 0. There-

fore, when we apply a tempered transformation
with T < 1, the entropy will strictly decrease
comaparing to the original distribution (where
T = 1).

C Mechanical Turk Setup

Our crowdworkers were required to have a HIT
acceptance rate higher than 95%, and be located

in the United States. In total, 602 crowdworkers
completed our tasks. In order to ensure that we had
quality data, we filtered the crowdworker annota-
tions for workers that spent at least 45 seconds on
the aggregate task (or 4.5 seconds rating each sen-
tence). 51 crowdworkers were filtered out through
this process. Screenshots of our instructions and
task are available in Figure(s) 8 and 9 respectively.

Figure 8: Our instructions for crowdworker task.

Figure 9: An example of the task given to crowdwork-
ers.

D Convergence of Human Evaluation

When we conduct human evaluation, we provide
crowdworkers with 200 generated samples for
some configuration, and ask 25 different crowd-
workers to evaluate the same sample. However, a
reasonable question is whether our human evalua-
tions are converging to some underlying true rating,
or whether we need more samples or replicas.

Figure 10 and 11 show that the average scores
have roughly converged around 150 samples per
configuration, or around 15 replicas per sample.
The two figures demonstrate this for nucleus sam-
pling, and this holds true for human evaluations of
all sampling algorithms.

E Additional Model-Generated Samples

Table 2 shows some additional samples from each
of the sampling algorithms described in the pa-
per. Similarly, we have chosen hyperparameters for
each sampling method that yields a similar diversity
(measured by self-BLEU) to the top-k configura-
tion where K = 15. We observe that all sampling
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Sampling Conditional Samples
Existing Sampling Algorithms

Top-K
(K = 15)

as the rest of his denver broncos teammates prepared for the game against denver, jay kasey could not
help but think of his teammates and friends who worked hard in preparation for that night’s game.

Nucleus
(P = 0.65)

as the rest of his denver broncos teammates slumped and buried themselves in their work, broncos
quarterback leon johnson moved to the locker room monday and called his parents.

Temperature
(T = 0.7)

as the rest of his denver broncos teammates gathered in an auditorium to watch more stretching drills,
ben holtz gave an emotional speech : we’re running out of time to win a championship ring.

Property-satisfying Sampling Algorithms
Random Top-K
(R = 30)

as the rest of his denver broncos teammates battled through their own stretch of the nfl playoffs, the
quarterback began throwing the ball in the fourth quarter.

Max Entropy
(E = 2.75)

steven spielberg’s dreamworks movie studio has agreed to pay $ #.# million to director john nichols (£
#.# million, ###, a record in the studio circulation ), the studio announced sunday..

Property-violating Sampling Algorithms
Random Mask
(R = 0.75)

as the rest of his denver broncos teammates connect with a player that the team didn’t expect to become
a starter, quarterback james crosby speaks out about colin peterson’s passion for the game.

Noised Top-K
(K=20, W=5e-3)

as the rest of his denver broncos teammates start making room for nerdy bundles or twiggy pitchers,
coach william perez might have to cut a big, bold note cut ready to console wife join them in iraq.

Target Entropy
(E = 2.5)

as the rest of his denver broncos teammates scratched out their locker rooms, cleanDeath Yo Communities
wander edge extingustretched cords429 Mohnegie wildfires.

Table 2: The samples conditioned on as the rest of his denver broncos teammates, and the hyperparameters for a
given sampling algorithm. The poor quality spans are higlighted in red.

Figure 10: We see that we obtain a reasonable estimate
of sample quality around 150 samples per configura-
tion.

Figure 11: We see that we obtain a reasonable estimate
of sample quality with around 15 ratings per sample.

algorithms except for noised top-k and target en-
tropy, yield similar quality samples. For noised
top-k and target entropy, we see that these samples
tend to degenerate towards the end of the sentence,

indicating violation of the identified properties may
possibly lead towards degraded performance.

F Human Evaluation with Self-BLEU as
Diversity Metric

Figure 12: Using self-BLEU as a diversity metric pro-
vides similar conclusions as to using n-gram entropy.

Figures 1 and 5 measures diversity in terms of 3-
gram entropy, while the rest of our work measures
diversity in terms of self-BLEU. For completeness,
we provide Figure 12 where self-BLEU is used
for diversity metric. This figure demonstrates that
similar trends can be observed using either 3-gram
entropy or self-BLEU.


