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Classical intensional semantic frameworks, like Montague’s Intensional
Logic (IL), identify intensional identity with logical equivalence. This
criterion of co-intensionality is excessively coarse-grained, and it gives
rise to several well known di�culties. Theories of fine-grained inten-
sionality have been been proposed to avoid this problem. Several of
these provide a formal solution to the problem, but they do not ground
this solution in a substantive account of intensional di↵erence. Apply-
ing the distinction between operational and denotational meaning,
developed for the semantics of programming languages, to the inter-
pretation of natural language expressions, o↵ers the basis for such an
account. It permits us to escape some of the complications generated
by the traditional modal characterization of intensions.

1 Introduction

Classical intensional semantic representation languages, like Montague
(1974)’s Intensional Logic (IL) do not accommodate fine-grained inten-
sionality. Montague, following Carnap (1947), characterizes intensions
as functions from worlds (indices of worlds and times) to denotations,
and so reduces intensional identity to equivalence of denotation across
possible worlds. Logically equivalent expressions are semantically indis-
tinguishable. This is too course a criterion for semantic identity. Logical
equivalence is not a su�cient condition for intersubstitutability in all
contexts.

(1) a. Every prime number is divisible only by itself and 1. <=>

b. If A ✓ B and B ✓ A, then A = B.
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(2) a. John believes that every prime number is divisible only by
itself and 1. < 6=>

b. John believes that if A ✓ B and B ✓ A, then A = B.

To avoid this di�culty a fine-grained theory of intensionality must
be able to distinguish between provable equivalence and intensional
identity.

2 Intensional Identity

Fox and Lappin (2005, 2010) propose Property Theory with Curry
Typing (PTCT) as an alternative intensional semantic representation
framework. It is a first-order system that consists of three components:
(i) an untyped �-calculus, which generates the language of terms, (ii)
a rich Curry typing system for assigning types to terms, (iii) and a
first-order language of well-formed formulas for reasoning about the
truth of propositional terms, where these are term representations of
propositions. A tableaux proof theory constrains the interpretation of
each component of this federative representation language, and it re-
lates the expressions of the di↵erent components. Restrictions on each
component prevent semantic paradoxes. A model theory allows us to
prove the soundness and completeness of the proof theory.

The terms of the untyped �-calculus encode computable functions.
These correspond to the intensions of the representation language. Iden-
tity in the �-calculus is defined in terms of the ↵, �, and ⌘ conditions
for substitution.

PTCT uses two notions of equality: intensional identity and exten-
sional equivalence. t ⇠=T s states that the terms t, s are extensionally
equivalent in type T . In the case where two terms t, s are propositions
(t, s 2 Prop), then t ⇠=

Prop

s corresponds to t $ s. If two predicates
of T are extensionally equivalent (t ⇠=(T=)Prop) s), then t, s each hold
of the same elements of T . Therefore 8x(x 2 T ! (Tt(x) $ Ts(x))),
where Tt(x) asserts that the proposition represented by the term t(x)
is true.

t =T s states that two terms are intensionally identical in type T .
As noted, the rules for intensional identity are essentially those of the
�↵�⌘-calculus. We are able to derive t =T s ! t ⇠=T s for all types
inhabited by t, s, but not t ⇠=T s ! t =T s. Therefore PTCT avoids
the reduction of provable equivalence to intensional identity. Two terms
can be provably equivalent by the proof theory, but not identical. In
this case, they remain intensionally distinct.

PTCT allows us to sustain both the logical equivalence of (1)a and
(1)b, and the non-equivalence of (2)a and (2)b. The former are provably
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equivalent, but they correspond to non-identical propositional terms in
PTCT.

The proof theory of PTCT induces a prelattice on the terms in Prop.
In this prelattice the members of an equivalence class of mutually entail-
ing propositional terms (terms that encode mutually entailing propo-
sitions) are non-identical and so correspond to distinct propositions.2

While this result achieves the formal property of fine-grained inten-
sionality, it does not, in itself, explain what intensional non-identity
consists in, beyond the fact that two distinct expressions in the lan-
guage of terms are identified with di↵erent intensions. This leaves us
with what we can describe as a problem of ine↵ability. Intensional dif-
ference is posited as (a certain kind of) inscriptional distinctness in
the �-calculus of terms, but this reduction does not o↵er a substantive
explanation of the semantic properties that ground the distinction. In-
tensional di↵erence remains ine↵able.

This is an instance of a general problem with inscriptional treat-
ments of fine-grained intensionality.3 They identify di↵erences of mean-
ing with distinctions among terms in a semantic representation lan-
guage. But without an account of how di↵erence in terms generates
intensional distinction, the inscriptional view leaves intensional non-
identity unexplained. Inscriptionalist theories avoid problems created
by the characterisation of intensions as functions on possible worlds at
the risk of rendering intensions primitive to the point of inscrutability.

3 Expressing Intensional Di↵erence Operationally

We can characterize the distinction between intensional identity and
provable equivalence computationally by invoking the contrast between
operational and denotational semantics in programming language. Two
simple examples illustrate this contrast.

For the first example take the function predecessorSet(x), which
maps an object in an ordered set into the set of its predecessors. So, for
example, if x 2 {0, 1, 2, 3, 4, 5}, predecessorSet(x) = PredSetx ⇢
{0, 1, 2, 3, 4, 5} such that 8y 2 PredSetx(y < x). It follows that
predecessorSet(0) = ;.

It is possible to define (at least) two variants of this function,
predecessorSeta and predecessorSetb, that are denotationally equiv-
alent but operationally distinct. predecessorSeta is specified directly

2Fox et al. (2002); Fox and Lappin (2005); Pollard (2008) construct higher-order
hyperintensional semantic systems using an extended version of Church’s SST and
a prelattice of propositions in which the entailment relation is a preorder.

3See Fox and Lappin (2005) for a discussion of inscriptionalist theories of inten-
tionality.
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in terms of an immediate predecessor relation, while predecessorSetb
depends upon a successor relation.

(3) a. predecessorSeta(x) = PredSetx, if
8y(y 2 PredSetx ! predecessor(y, x)).

b. predecessor(y, x) if
predecessorimmediate(y, x); else

(i) predecessor(y, x) if
predecessorimmediate(y, z), and
predecessor(z, x).

(4) a. predecessorSetb(x) = PredSetx, if
8y(y 2 PredSetx ! successor(x, y)).

b. successor(x, y) if
successorimmediate(x, y); else

(i) successor(x, y) if
successorimmediate(x, z), and
successor(z, y).

The second example involves functions g : ⌃⇤ ! {1, 0} from ⌃⇤, the
set of strings formed from the alphabet of a language, to the Boolean
values 1 and 0, where g(s) = 1 if s 2 L, and 0 otherwise. Let gcsg1 be
defined by the Definite Clause Grammar (DCG) in (5), and gcsg2 by
the DCG in (6).4

(5) S ! [a], S(i).
S(I) ! [a], S(i(I)).
S(I) ! Bn(I), Cn(I).
Bn(i(I)) ! [b], Bn(I).
Bn(i) ! [b].
Cn(i(I)) ! [c], Cn(I).
Cn(i) ! [c].

(6) S ! A(I), B(I), C(I).
A(i) ! [a].
A(i(I)) ! [a], A(I).
B(i) ! [b].
B(i(I)) ! [b], B(I).
C(i) ! [c].
C(i(I)) ! [c], C(I).

4See Pereira and Shieber (1987) for an explanation of Definite Clause Gram-
mars. The DCG in (5) is from Gazdar and Mellish (1989). Matthew Purver and I
constructed the DCG in (6) as a Prolog programming exercise for a computational
linguistics course that I gave in the Computer Science Department at King’s College
London in 2002.
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Both these DCGs define the same context-sensitive language

{anbncn| 1  n},
the language whose strings consist of n occurrences of a, followed by
n bs, and then n cs. The number of as, bs, and cs match in all strings.
Each DCG uses a counting argument I for a non-terminal symbol to
build up a stack of indices i that gives the successive number of occur-
rences of as, bs, and cs in a string. But the grammar in (5) counts from
the bottom up, adding an i for each non-terminal that the recognizer
encounters. By contrast the grammar in (6) imposes the requirement
that the three stacks for the non-terminals A, B, and C be identical,
and then it computes the indices top down. The two grammars are com-
putationally distinct, and using each of them to recognize a string can
produce di↵erent sequences of operations, of di↵erent lengths and rela-
tive e�ciency. Therefore, gcsg1 and gcsg2 are operationally distinct, but
denotationally equivalent. They compute the same string set through
di↵erent sets of procedures.

4 Computable Functions and Natural Language
Expressions

Recall that the terms of PTCT are �-expressions that encode com-
putable functions. We have identified these with the intensions of words
and phrases in a natural language. Given the distinction between deno-
tational and operational meaning we can now interpret the non-identity
of terms in the representation language as an operational di↵erence in
the functions that these terms express. But a class of such terms can
still be provably equivalent in the sense that they yield the same values
for the same arguments by virtue of the specifications of the functions
that they correspond to. This provides a straightforward account of
fine-grained intensionality in PTCT which avoids taking intensional
di↵erence as ine↵able.

It is reasonable to ask what it could mean to characterise the inter-
pretation of a natural language expression as a computable function.
Rich type theories, like PTCT and Type Theory with Records (TTR,
Cooper (2012)), are based on the type systems used in programming
languages. In some of these systems propositions are identified with
proofs, where the proof of a proposition is the procedure applied to
establish that it is assertable.5 This can be a formal procedure, like the
application of the rules of a proof theory, but it need not be. It could
also be the sequence of operations involved in making the observations

5See Martin-Löf (1984) for a type theory in which propositions are characterised
as proofs in a formal system.
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that support the application of a classifier predicate to an object or an
event.

On the view proposed here we are taking the semantic content of
terms in a natural language to be the functions that we use to compute
the denotations of these expressions. If such a term is a predicate, then
the function that corresponds to its meaning encodes the procedure
through which we determine the values that it returns for its domain
of arguments (n-tuples of arguments for relational predicates).

Two predicates may correspond to distinct functions which happen
to yield the same values for each argument in a given domain, but they
would diverge if defined for an alternative domain. This would be the
situation for predicates that are contingently co-extensive. However,
as we have seen in Section 3, it is possible for two (or more) distinct
computable functions to be provably equivalent. In this case they will
generate the same range of values for all domains for which they are
defined, through di↵erent sequences of operations, by virtue of the way
in which these sequences are specified.

5 Two Alternative Operational Approaches

Muskens (2005) suggests a similar approach to hyperintensionality.
He identifies the intension of an expression with an algorithm for de-
termining its extension.6 There are two major points of di↵erence
between Musken’s theory and the one proposed here. First, he em-
beds his account in a logic programming approach, which he seems
to take as integral to his explanation of hyperintensionality, while I
have developed my analysis in a functional programming framework.
This is, in fact, not an issue of principle. The same algorithm can be
formulated in any programming language. So, for example, the def-
initions of predecessorSeta and predecessorSetb correspond to two
Horn clause definitions in Prolog for variant predecessor predicates,
predecessorA(Y, X) and predecessorB(Y, X).

(7) predecessorA(Y, X) : - predecessorImmediate(Y, X).
predecessorA(Z, X) : -
predecessorImmediate(Y, X),
predecessorA(Y, Z).

(8) predecessorB(Y, X) : - successor(X, Y).

6Duž́ı et al. (2010) also adopt an operational view of hyperintensionality within
Tichý (1988)’s Transparent Intensional Logic. However, the computational details
of their account are left largely unspecified. Both Muskens (2005) and Duž́ı et al.
(2010) regard their respective proposals as working out Frege (1892)’s idea that a
sense is a rule for identifying the denotation of an expression.
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successor(X, Y) : - successorImmediate(X, Y).
successor(X, Z) : -
successorImmediate(X, Y),
successor(Y, Z).

Similarly, the DCGs in (5) and (6) that we used to define gcsg1 and
gcsg2, respectively, are (close to) Prolog executable code.

However, the functional programming formulation of the opera-
tional view of fine-grained intensionality follows straightforwardly from
PTCT, where the untyped �-calculus generates the intensional terms
of the semantic representation language, and these encode computable
functions. PTCT also o↵ers rich Curry typing with weak polymor-
phism, and a logic of w↵s for reasoning about truth and entailment,
within a first-order system. The fact that it implies the operational
account of intensional di↵erence without further stipulation renders it
attractive as a framework for developing computational treatments of
natural language semantic properties.

The second, more substantive point of di↵erence concerns the role
of possible worlds in characterizing intensions. Muskens develops his
hyperintensional semantics on the basis of Thomason (1980)’s Inten-
tional Logic. In this logic Thomason proposes a domain of proposi-
tions as intensional objects, where the set of propositions is recursively
defined with intensional connectives and quantifiers. He posits a ho-
momorphism that maps propositions (and their constituents) to their
extensions, and he constrains this homomorphism with several mean-
ing postulates that restrict this mapping.7 Muskens modifies and ex-
tends Thomason’s logic by specifying a homomorphism between the
intensional expressions of the logic and their extensions across the set
of possible worlds. Propositions are mapped to the set of worlds in
which they are true. As the homomorphism can be many-to-one, dis-
tinct propositions can receive the same truth-value across worlds.8

By contrast, PTCT adopts Thomason’s possible worlds-free strategy
of mapping propositions to truth-values. It does this by using a truth

7Fox and Lappin (2005) point out that Thomason’s logic is problematic because
it does not characterize the algebraic structure of the domain of propositions. It does
not o↵er a proof theory that defines entailment for propositions, and so it leaves the
relation between intentional identity and extensional equivalence crucially under
determined.

8Fox et al. (2002); Fox and Lappin (2005); Pollard (2008) adopt a similar view
for the fine-grained higher-order logics that they construct. They define worlds as
untrafilters in the prelattice of propositions, and they take the truth of a proposition,
relative to a world, to be its membership in such an ultrafilter. As entailment in the
prelattice is defined by a preorder, distinct propositions can belong to the same set
of ultrafilters.
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predicate to form a w↵ T(�) to assert the truth of the proposition that
the term � 2 Prop represents. Therefore, like Intentional Logic, PTCT
de-modalizes intensions. This is a positive result. It is not clear why,
on the fine-grained view, possible worlds must be essentially connected
with the specification of intensions.

On both Musken’s account and the one proposed here, the content
of an intension is the set of computational operations through which
it determines its denotational value, where these do not make essential
reference to possible worlds. In the case of a proposition, the denotation
that it determines is a truth-value, rather than a truth-value relative
to a world. There may be independent epistemic, or even semantic
reasons for incorporating possible worlds into one’s general theory of
interpretation, but worlds are not required for an adequate explana-
tion of fine-grained intensionality. On the contrary, such an account
must dispense with the original characterization of intensions as func-
tions from worlds to extensions in order to explain the persistence of
intensional di↵erence beyond provable equivalence. Therefore, a radi-
cally possible worlds-free view of fine-grained intensionality o↵ers the
cleaner approach.

Moschovakis (2006) proposes an operational treatment of meaning
within the framework of the typed �-calculus. He constructs a language
L�
ar as an extension of Gallin (1975)’s Ty2. He specifies acyclic recursive

procedures for reducing the terms of L�
ar to unique cannonical forms,

and he identifies the meaning (”referential intension”) of a term in this
language with the “abstract algorithm” for computing its denotation.

There are two major points of di↵erence between Moschovakis’ algo-
rithmic theory of intensions and the account proposed here. First, while
in PTCT ↵, �, and ⌘ reduction sustain intensional identity, in L�

ar � re-
duction does not. His primary motivation for this move seems to be his
concern to maintain the non-synonymy of sentences like John loves him-
self on one hand, and those like John loves John on the other. In L�

ar the
canonical form of the former is (�(x)loves(x, x))(j) where j := john,
while that of the latter is loves(j1, j2) where j1 := John, j2 := John.

But this issue would appear to be an artifact of the way that
Moschovakis has chosen to formalize proper names and reflexive pro-
nouns. If one represented them as distinct sorts of generalized quanti-
fiers, or constants, then this problem would not arise. In any case, it
is not a deep question of principle. We take ↵, �, and ⌘ reduction to
support intensional identity because they are normalizing operations
on �-terms in the semantic representation language, and so they do
not correspond, in any obvious way, to processes or relations of natural
languages. However, it is perfectly possible to narrow the specification
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of intensional identity in PTCT to exclude � (as well as ⌘, and even ↵)
reduction, without altering the proposed account of intensions as com-
putable functions. This would simply involve imposing a particularly
fine-grained notion of intensional identity.

The second point of di↵erence is more significant. Moschovakis spec-
ifies a Kripke frame semantics for L�

ar which is a variant of Montague’s
possible worlds models (he refers to them as “Carnap states”). These
are n-tuples of indices corresponding to worlds, times, speakers, and
other parameters of context. Intensions are characterized as algorithmic
procedures for determining the denotation of a term relative to a world
and the other elements of such an n-tuple. Therefore, like Muskens
Moschovakis’ operational view of intensions treats them as inextricably
bound up with possible worlds. The arguments that I brought against
this view in Muskens’ case apply with equal force here. An important
advantage of the proposed account is that it factors modality and pos-
sible worlds out of the specification of intensions.

6 Conclusion

While theories of fine-grained intensionality may avoid the reduction
of intensional identity to provable equivalence, many of them do not
go beyond a bare inscriptionalist treatment of intensional di↵erence.
Therefore they leave this notion ine↵able. On the proposal developed
here intensional di↵erence is the operational distinctions among com-
putable functions, and extensional identity is the denotational equiva-
lence of the values that functions compute. This account grounds fine-
grained intensionality in a way that naturally accommodates cases of
intensional di↵erence combined with provable denotational equivalence.

Given that PTCT uses the untyped �-calculus to generate the Curry
typed term representations for the intensions of the language, and these
terms encode computable functions, the proposed operational charac-
terization of intensional di↵erence is already implicit in this semantic
framework.

This account yields a radically non-modal view of intensions in which
possible worlds play no role in their specification or their interpreta-
tion. An intension is identified directly with the sequence of operations
performed in computing the value of the function that expresses it.
Fine-grained intensionality becomes the operational contents of com-
putable functions.
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