
SCFG Latent Annotation for Machine Translation

Tagyoung Chung, Licheng Fang, Daniel Gildea

Department of Computer Science
University of Rochester
Rochester, NY 14627

Abstract
We discuss learning latent annotations for synchronous
context-free grammars (SCFG) for the purpose of improving
machine translation. We show that learning annotations for
nonterminals results in not only more accurate translation,
but also faster SCFG decoding.

1. Introduction

Synchronous context-free grammar (SCFG) is an expressive
yet computationally expensive model for syntax-based ma-
chine translation. Practical variations of SCFG-based models
usually extract rules from data under a set of constraints. The
hierarchical phrase-based model [1] is a restricted form of
synchronous context-free grammar. The grammar has only
one nonterminal, and extraction is based on word alignments
of sentence pairs. GHKM [2] represents a more general
form of synchronous context-free grammar. The grammar
is extracted under the constraints of both word alignments of
sentence pairs and target-side parse trees. In this paper, we
discuss adding annotations to nonterminals in synchronous
context-free grammars extracted using the GHKM method
[2] to improve machine translation performance.

Nonterminal refinement is a well-studied problem in En-
glish parsing, and there is a long, successful history of re-
fining English nonterminals to discover distributional differ-
ences. The fact that the granularity of nonterminals in the
Penn English Treebank [3] is too coarse for automatic pars-
ing has been widely discussed, and addressing the issue by
refining English nonterminals has been shown to improve
monolingual parsing performance.

There are many ways to refine the set of nonterminals in
a Treebank. Many of the previous attempts essentially try
to weaken the strong independence assumptions of proba-
bilistic context-free grammars by annotating nonterminals in
different ways. For example, Johnson [4] takes the approach
of simply annotating each node with its parent’s label. The
effect of this is to refine the distribution of each nonterminal
over sequences of children according to its position in the
tree; for example, a VP beneath an SBAR node will have a
different distribution over its children from a VP beneath an S
node. This simple technique alone produces a large improve-
ment in English Treebank parsing. Klein and Manning [5]
expanded this idea with a series of experiments wherein they

manually refined nonterminals to different degrees, which re-
sulted in parsing accuracy rivaling that of bilexicalized pars-
ing models of the time.

More recently, Petrov et al. [6] refined techniques origi-
nally proposed by Matsuzaki et al. [7] and Prescher [8] for
automatically learning latent annotations, resulting in state-
of-the-art parsing performance with cubic-time parsing al-
gorithms. The main idea of these approaches is to learn la-
tent annotation of nonterminals by splitting nonterminals and
learning distributional differences of split nonterminals using
the EM algorithm [9]. Improvements presented by Petrov et
al. [6] include merging back frivolous splits and smoothing
the parameters.

There have been efforts to expand the idea of nontermi-
nal annotation to synchronous context-free grammars in or-
der to improve machine translation. Huang and Knight [10]
presented various linguistically motivated annotations to the
Penn English Treebank nonterminals — some of which were
motivated by ideas by Klein and Manning [5]. Their results
show that annotating nonterminals in target-side parse trees
and then extracting an SCFG grammar from the trees im-
proves machine translation performance. Huang et al. [11]
applied the idea by Petrov et al. [6] to learn a latent distribu-
tion for the single Hiero nonterminal and used distributional
similarities as a soft constraint for rewriting rules. Wang et
al. [12] used the same split-merge approach to learn latent
annotations of the target-side parse tree before extracting an
SCFG grammar. This approach results in improvement in
machine translation performance.

However, it is possible that the nonterminal refinements
that help parsing may not be optimal for the purposes of ma-
chine translation. In particular, since the internal nodes of
GHKM translation rules are irrelevant to the decoding pro-
cess, there is no need to for the translation model to predict
them accurately. The decoder must, however, choose which
translation rules to combine, and refined nonterminals can
help tell us which rule combinations to prefer.

In this paper, we discuss how we can learn latent anno-
tations that are targeted for use in translation. Our work is
similar in spirit to the work of Wang et al. [12], but with the
important difference that, rather than learning latent annota-
tions on target-side trees before grammar extraction, we learn
latent annotations on the extracted SCFG grammar. We show
that our approach brings statistically significant improvement

151



1. Binarize target-side parse trees
2. Mark frontier nodes
3. Binarize rule trees
4. Learn latent annotations for rule trees
5. Annotate rule trees with the Viterbi split
6. Recover SCFG grammar from rule trees

Table 1: SCFG rule extraction

1. Binarize target-side parse trees
2. Learn latent annotations for parse trees
3. Annotate parse trees with the Viterbi split
4. Extract SCFG grammar from parse tree

Table 2: Baseline

over the method presented by Wang et al. [12]. Annotating
SCFGs somewhat enlarges the grammar, however, contrary
what one might expect, we show that the annotated grammar
greatly speeds up decoding. Our contribution can be summa-
rized as follows. First, we present a novel way to annotate
SCFG grammar which improves translation accuracy over
the baseline approach. Second, we provide detailed analy-
ses of why decoding with the annotated grammar not only
increases translation accuracy but also leads to faster decod-
ing.

2. Learning latent annotations for SCFG

In this section, we discuss several issues arising from learn-
ing latent annotations for SCFG. We also discuss the ex-
act process of labeling nonterminals with latent annotations.
Figure 1 describes the entire process of extracting SCFG
rules, learning latent annotations, and generating the final
grammar. Table 1 summarizes the process. We will discuss
each step in more detail and highlight the difference between
our approach and the baseline in the rest of the section. Our
baseline is the work by Wang et al. [12], which is summa-
rized in Table 2.

2.1. Parse tree binarization

The issue of binarization comes up multiple times when
learning latent annotations for SCFGs. As shown by Wang
et al. [13], binarization of target-side parse trees before ex-
tracting GHKM rules improves translation quality by break-
ing larger rules into smaller rules with more generalization
power. Target-side tree binarization generates virtual tree
nodes that may be frontiers, which relax the constituent
boundary constraints imposed by parse trees during rule ex-
traction. In both the baseline and our grammar refining ap-
proach, we left-binarize English parse trees. However, for
comparison, we also do experiments where we use the origi-
nal English parse trees without binarization. Parse tree bina-
rization is the first step in Figure 1.

2.2. Marking frontier nodes

To learn latent annotation for SCFG, we need to extract
GHKM rules from each sentence and reconstruct them as
a rule tree for each sentence. In practice, using parsed En-
glish sentences, Chinese terminals and their alignments, we
marked frontier nodes as defined in [2] and removed non-
frontier nodes. We slightly modify the definition of frontier
nodes to avoid extracting unary rules: a frontier node cannot
have a parent who covers the same source-side span. The
details of this change can be found in [14]. Steps 2 and 3
of Figure 1 show marking frontier nodes and removing non-
frontier nodes. There is one exception to the process of re-
moving non-frontier nodes. To aid EM, we do not remove
preterminals even when they are not frontier nodes. In Fig-
ure 1, VBD and JJ are removed because they are not frontier
nodes. However, in actual grammar training, they were not
removed.

To differentiate from the original English parse tree, we
henceforth refer to a tree with non-frontier nodes removed as
arule tree (e.g., the tree after step 3 in Figure 1) and a normal
English parse tree as a parse tree.

2.3. Rule tree binarization

Efficient split-merge EM training requires binarized trees.
During training, splitting each nonterminal into two intro-
duces2n+1 rules for each rule withn right-hand-side nonter-
minals. We run the grammar trainer on binarized rule trees
in all our experiments to keep training practical.

One difference of our approach from that of the base-
line approach also lies in this rule binarization. Figure 2 il-
lustrates this difference. The leftmost tree in Figure 2 is a
target-side parse tree fragment with frontier nodes marked.
Then, we remove non-frontier nodes to reveal the SCFG rule
tree. As mentioned, we need to binarize the rule tree for split-
merge grammar training. Each rule in the rule tree is left-
binarized which introduces virtual nonterminals. By altering
structures inside SCFG rules, we enable the grammar trainer
to maximize the likelihood of generating the data, which is
achieved by not using the Treebank grammar, but using the
SCFG rules which are actually used in translation. In case of
the example in Figure 1, all SCFG rules happen to be binary;
therefore the rule tree is kept as it is.

2.4. Latent annotation

We follow the method presented in [6] for split-merge-
smooth cycle on SCFG grammar with little change. The gen-
eralcycle of one iteration of training follows:

1. Split a nonterminal into two nonterminals and use EM
to learn probabilities for the new rules introduced.

2. Merge split nonterminals back if the loss in likelihood
for merging is small.

152



S

NP

NPB

NNP

us

NNS

audiences

VP

VBD

were

ADJP

JJ

shocked

.

.

S

S

NP

NPB

NNP

us

NNS

audiences

VP

VBD

were

ADJP

JJ

shocked

.

.

S

S

NP

NPB

NNP

us

NNS

audiences

VP

VBD

were

ADJP

JJ

shocked

.

.

S

S

NP

NNP

us

NNS

audiences

VP

were shocked

.

.

S-4

S-4

NP-14

NNP-24

us

NNS-13

audiences

VP-9

were shocked

.-1

.

美 民众 哗然 .

S-4 → S-4 .-1 , S-4 .-1

S-4 → NP-14 VP-9 , NP-14 VP-9

NP-14 → NNP-24 NNS-13 , NNP-24 NNS-13

NNP-24 → 美 , us

NNS-13 → 民众 , audiences

VP-9 → 哗然 , were shocked

.-1 → . , .

1. Binarize parse tree

2. Mark frontier

3. Remove non-frontier nodes

4. Learn and annotate Viterbi split

5. Recover SCFG rules

Figure 1: Illustration of Viterbi-split annotated SCFG extraction process. Boxed nodes are frontier nodes. Between step three
and four, there isbinarize rule tree step. However, since the rule tree is already binary, the step has been omitted.

153



A

B

E

w1

F

w2

C

D

w3

A

E

w1

F

w2

w3

A

A

E

w1

F

w2

w3

Remove non-frontier nodes Binarize rule tree

Figure 2:Illustration of rule tree binarization

3. Use additive smoothing so that distributions for split
nonterminals may not diverge too much.

Learning latent annotation on reconstructed rule trees
rather than target-side English parse trees is the key differ-
ence between our work and the baseline. Because we bina-
rize the reconstructed rule trees before learning latent anno-
tation, depending on the structure of a rule, compared to the
baseline, we may end up learning latent annotation for very
different structure and nonterminals.

After learning the latent annotation for SCFG rules, we
annotate rule trees with Viterbi split annotation, rather than
using entire split SCFG grammar. This is reasonable because
learned split annotations are usually very consistent. This
also vastly reduces the number of SCFG rules that the de-
coder needs to handle. Step 4 in Figure 1 illustrates Viterbi
split annotation.

After the Viterbi split annotation, we can finally recover
SCFG rules from the rule tree, which is illustrated as Step 5
in Figure 1.

2.5. SCFG terminals

So far, we have only discussed using only English terminals
for split-merge training. However, since we are working with
SCFG rules, we may choose to use English, Chinese, or both
English and Chinese for terminals of the rule trees that we
use for learning latent annotation. Although what we have
is essentially English syntactic structure, we can replace En-
glish terminals with Chinese using word alignment, or we
can try to fuse two aligned terminals. Figure 3 shows the
three aforementioned configurations. We experiment with all
three configurations.

3. Experiments

3.1. Setup

We used a Chinese-English parallel corpus with the English
side parsed for our experiments. The corpus consists of 206K
sentence pairs, which is 5M words on the English side.1 Min-

1We randomly sampled our data from various different sources
(LDC2006E86, LDC2006E93, LDC2002E18, LDC2002L27,
LDC2003E07, LDC2003E14, LDC2004T08, LDC2005T06, LDC2005T10,
LDC2005T34, LDC2006E26, LDC2005E83, LDC2006E34, LDC2006E85,
LDC2006E92, LDC2006E24, LDC2006E92, LDC2006E24)

S

S

NP

NNP

us

NNS

audiences

VP

were shocked

.

.

S

S

NP

NNP

美

NNS

民众

VP

哗然

.

.

S

S

NP

NNP

us美

NNS

audiences民众

VP

were哗然 shocked哗然

.

.

Figure 3: Rule trees with three different terminal configura-
tions

154



imum error rate training (MERT) [15] was used to tune pa-
rameters. We used a 392-sentence development set with four
references for parameter tuning, and a 428-sentence test set
with four references for testing. The development set and
the test set only had sentences with less than 30 words for
decoding speed. All English-side data used in the experi-
ments were lower cased. Our in-house SCFG decoder was
used for experiments with a trigram language model. The
same settings of cube-pruning [16] were used for all exper-
iments. BLEU [17] was calculated for evaluation. We also
performed significance tests for our results using paired boot-
strap resampling [18]. The difference is considered statis-
tically significant if p < 0.05 based on 1000 iterations of
paired bootstrap resampling.

We left-binarized the English parse trees before running
split-merge-smoothing grammar training cycles and extract-
ing GHKM grammars for the baseline, where we tried to
replicate the work in [12]. We mark the frontier nodes on
the same binarized parse trees to segment the parse trees ac-
cording the source side of SCFG rules. We then convert each
parse tree segment to be left-binarized for grammar train-
ing. We also extracted an SCFG from unbinarized parse
trees for a comparison. All split-merge-smoothing cycles
used the same settings: 2-way split and 50% merge-back. We
have tried using only English terminals, only Chinese termi-
nals, and fused terminals as SCFG terminals for the grammar
training. Synchronous binarization [19] was applied to all re-
sulting grammars.

3.2. Results

3.2.1. Learning splits on SCFG vs. tree

Table 3 summarizes BLEU scores of our test set from each
grammar. BLEU scores on the development set, which was
used to tune parameters, exhibit the same trend, which is dis-
cussed below. The column labeledtree, which is our base-
line, indicates grammars extracted from the parse trees that
are annotated with Viterbi split annotations learned from the
parse tree. As previously mentioned, the latent annotations
for these grammars are learned on binarized parse trees. The
column labeledSCFG andSCFG-un indicates grammars ex-
tracted from rule trees that are annotated with Viterbi split
annotations learned from the rule trees. The latent annota-
tion for these grammars are learned on binarized SCFG rules
with only English terminals. The difference betweenSCFG
andSCFG-un is whether original parse trees were binarized
before marking frontier nodes.

The best result for our baseline came at the second iter-
ation of grammar training, and the best result for grammars
extracted from SCFG rule trees came at the fifth iteration of
grammar training, regardless of whether original parse tree
was binarized at the time of initial SCFG extraction (marking
frontier nodes). The difference between our best result and
the best result of the baseline is statistically significant. Inci-
dentally, the second cycle grammar that is extracted from the

cycle tree SCFG SCFG-un
0 20.64 20.64 20.05
1 20.57 20.49 20.69
2 21.94 21.27 20.73
3 21.22 21.45 20.86
4 21.33 21.87 21.90
5 21.38 22.98 22.52
6 21.75 22.32 22.02

Table 3: BLEU score results for Viterbi split (learned from
the original trees) annotated SCFG grammars that are ex-
tracted from the Viterbi annotated original binarized parse
tree (baseline), Viterbi split (learned from the rule trees) an-
notated SCFG that are extracted from binarized parse tree,
and Viterbi split (learned from rule trees) annotated SCFG
that are originally extracted from regular parse tree (not bi-
narized) for each grammar training cycle

Viterbi split annotated parse tree is the most comparable to
the best result presented in [12] when we compare the nonter-
minal set size. (Using one iteration of split-merge-smoothing
cycle 4-way split and 90% merge-back, the nonterminal set
size in their work is 178, while, in our work, it is 237 at the
second cycle.)

3.2.2. Binarization

Binarizing the parse trees before extracting rules did bring
some improvement. On our test set, for non-split grammar,
the improvement is from BLEU of 20.05 to 20.64. The differ-
ence is statistically significant. The second and third column
of Table 3 show the difference between SCFG grammars ex-
tracted from binarized parse trees and parse trees that are not
binarized. The second column represents results from gram-
mars that are extracted from binarized parse trees, which is
consistently better than the results (the third column) from
using parse trees that are not binarized for all grammar train-
ing cycle. However, at the fifth cycle, when the both gram-
mars peak in terms of BLEU scores on the test set, the dif-
ference is only significant at p< 0.084. Overall, the result
confirms previous works by others [12, 13] and shows that
the benefits of binarization extend to our way of learning la-
tent annotations.

3.2.3. Using different terminals

Having only English terminals yielded the best result. Ta-
ble 4 summarizes the three configurations for terminals. On
our test set, having only English terminals during the gram-
mar training yielded BLEU of 22.98 for our test set. Having
Chinese terminals yielded 21.12, and having fused terminals
yielded 21.26.

155



S

NP VP .

S

S

NP VP

.

S-1

S-2

NP-3 VP-4

.

NP VP . NP VP . NP VP .

S→ NP VP. , NP VP . S→ S . ,S . S-1→ S-2 . ,S-2 .

S→ NP VP , NP VP S-2→ NP-3 VP-4 , NP-3 VP-4

binarize annotate

Figure 4:Illustration of how binarization and latent annotation alters extracted SCFG rules

English Chinese Fused
22.98 21.12 21.26

Table 4: SCFG with only English terminals, only Chinese
terminals, and fused terminals. All grammars are of fifth cy-
cle.

4. Analyses

4.1. What is happening?

There are two major reasons for the success of the nonter-
minal relabeling strategy presented in this paper. They are
binarization and consistent latent annotation.

Figure 4 summarizes our approach to relabeling nonter-
minals. First, binarization of target-side parse trees enables
us to learn a more general grammar. For example, in the ex-
ample given in Figure 4, we can extract two rules instead of
one, which increases the chances of extracting rules that are
useful at the test time. The binarization gives us a modest
boost of BLEU score. The score for our test set increases
from 20.05 to 20.64, which is consistent with works by oth-
ers [12, 13].

Binarization effectively Markovizes the rules we extract,
but, as discussed in Section 3.2, the biggest improvement
comes when rules are annotated with learned latent annota-
tions. The annotation restricts rules that can be applied given
a context, therefore, we are implicitly learning bigram rule
probabilities. The annotation guides the decoder to correctly
glue together Markovized rules. This brings us two positive
effects: accuracy and speed, which are discussed in the next
two sections.

4.2. Why is it more accurate?

Figure 5 shows an example of why the annotation brings
about more accurate translation. It shows how a lexical rule
(PP-27→为了, in orderto) can be applied at decoding time.
The figure includes the three rules with highest probability
from the fifth-cycle grammar that can be applied to this rule
(rules that have the left-hand side (PP-27) of this rule as a

PP-2 PP-8 PP-11

PP-27 VP-2

VB-6

in orderto NP-3

为了 VP-20 NP-6

Figure 5: Illustration of how annotation helps the decoder to
find moreaccurate translation

child). All three rules haveVP-2 as a second child. The
figure alsoshows the top three rules that haveVP-2 on the
left-hand side.Two of them have VB as the first child, which
stands for base-form verb. There is one exception (the rule
that hasVP-20 as the left child). However, even for this rule,
the topthree rules that haveVP-20 on the left-hand side all
have ADVP as the first child and VB as a second child (not
shown in the figure). This chain of rules restricts the word
following in order to to be a verb in its base-form, which
leads to grammatically correct translation.

4.3. Why is it faster?

Table 5 shows the total number of rules and total number of
nonterminals for each grammar. As one would expect, as the
split-merge-smoothing cycle progresses, we increasingly get
more nonterminals and grammars become larger. However,
the size of grammar does not explode as one might expect.
Although the sixth cycle grammar has more than ten times as
many nonterminals as the non-split grammar, the grammar is

156



cycle rules nonterminals
0 1.43 × 10

6 103
1 1.55 × 10

6 158
2 1.62 × 10

6 239
3 1.67 × 10

6 359
4 1.74 × 10

6 542
5 1.81 × 10

6 817
6 1.89 × 10

6 1234

Table 5: number of rules and nonterminals for grammars
from each cycle

cycle cubes edges WPM
0 8.45 × 10

7
3.75 × 10

6 15.66
1 1.07 × 10

8
3.64 × 10

6 12.75
2 9.21 × 10

7
3.66 × 10

6 13.59
3 7.83 × 10

7
3.64 × 10

6 15.17
4 5.50 × 10

7
3.62 × 10

6 19.11
5 3.78 × 10

7
3.56 × 10

6 25.83
6 2.25 × 10

7
3.35 × 10

6 39.44

Table 6: Number of cubes being built, number of hyper-
edges proposed, and decoding time (words per minute) for
each grammar

only about 30 percent larger because annotations stay very
consistent.

One might also expect that, since the grammar becomes
larger as the split-merge-smoothing cycle progresses, the
speed of decoding with larger grammar would slower as well.
However, we have the quite the opposite result. Table 6 sum-
marizes decoding times of the test set for each grammar. The
grammar is re-decoded with the same set of parameters to
eliminate the influence of other factors (such as the feature
for the total number of rules used). The trend is largely
the same even when the grammar is decoded with different
sets of parameters. It is clear from the table that decoding
grammars from later stages of split-merge-smoothing cycles
is faster, not slower.

This phenomenon can be explained by examining the
number of edges proposed by the decoder in Table 6. The
decoder uses cube pruning and resulting hypergraphs have
two types of edges: -LM edges, which are the outcome of
parsing with the grammar without language model integra-
tion and +LM edges, which represent derivations after the in-
tersection of -LM edges with the language model. The cube
pruning builds one cube for each -LM edge. Therefore, the
number of cubes that are built is effectively the number of
-LM edges. Table 6 shows both the number of cubes that are
built and the number of +LM edges proposed by the decoder
for the entire test set. We can observe that because of prun-
ing, the number of +LM edges stays roughly the same even
when decoding with different grammars. We also observe
that the decoding time is highly correlated with the number
of -LM edges, where no pruning is applied. We can conclude

from these observations that the number of cubes being built
is the dominating factor in the decoding time. The reason
that fewer -LM edges are being built when decoding with the
annotated grammar is that the Viterbi split annotations that
are learned from the grammar training specialize the rules in
the annotated grammar, which results in fewer rules being
matched when decoding with the annotated grammar, thus
leading to faster decoding.

For example, for the lexical rule in Figure 5, in the non-
split grammar, there are 8030 rules that havePP as a child
but thereare only 860 rules that havePP-27 as a child in the
fifth-cyclegrammar.

5. Conclusion and future work

In this paper, we have discussed how we can learn latent
annotations for SCFGs to improve machine translation re-
sults. The method we presented here has two-fold benefits.
It makes decoding more accurate in terms of BLEU score
and it speeds up decoding by a considerable margin. We
showed that learning latent annotations on SCFGs directly
yields better translation results than learning latent annota-
tions for target-side trees.

There are a number of ways to improve our approach.
First, we can employ more sophisticated binarization rather
than doing simple left binarization. For example, we have
performed synchronous binarization only after extracting
grammars, but we could try to binarize the tree in the same
manner before extracting grammars. Second, we can investi-
gate further into how we can effectively incorporate source-
side terminals. The current method of simply fusing source
and target terminals may be too crude to yield any benefits.
We need to further analyze the result and understand why the
current approach yields no benefits and design a method of
including source-side terminals in grammar training in a way
that would improve translation result. Finally, we may ben-
efit from more sophisticated grammar training. The current
method does not provide a good indication of whether the
grammar is over-fitting or under-fitting until we decode with
the grammar and observe fluctuation in the translation accu-
racy. We can use a development set to control the number of
training cycles. We may also introduce priors to incorporate
our beliefs about what good split nonterminal distributions
should be like.

6. References

[1] D. Chiang, “A hierarchical phrase-based model for
statistical machine translation,” inProceedings of
the 43rd Annual Conference of the Association for
Computational Linguistics (ACL-05), Ann Arbor,
MI, 2005, pp. 263–270. [Online]. Available: http:
//www.aclweb.org/anthology/P/P05/P05-1033

[2] M. Galley, M. Hopkins, K. Knight, and D. Marcu,
“What’s in a translation rule?” inProceedings of the

157



2004 Meeting of the North American chapter of the As-
sociation for Computational Linguistics (NAACL-04),
Boston, 2004, pp. 273–280.

[3] M. P. Marcus, B. Santorini, and M. A. Marcinkiewicz,
“Building a large annotated corpus of English: The
Penn treebank,”Computational Linguistics, vol. 19,
no. 2, pp. 313–330, June 1993.

[4] M. Johnson, “PCFG models of linguistic tree represen-
tations,”Computational Linguistics, vol. 24, no. 4, pp.
613–632, 1998.

[5] D. Klein and C. D. Manning, “Accurate unlexicalized
parsing,” in Proceedings of the 41st Annual Meet-
ing of the Association for Computational Linguistics.
Sapporo, Japan: Association for Computational Lin-
guistics, July 2003, pp. 423–430. [Online]. Available:
http://www.aclweb.org/anthology/P03-1054

[6] S. Petrov, L. Barrett, R. Thibaux, and D. Klein,
“Learning accurate, compact, and interpretable tree
annotation,” inProceedings of the 21st International
Conference on Computational Linguistics and 44th
Annual Meeting of the Association for Computational
Linguistics. Sydney, Australia: Association for
Computational Linguistics, July 2006, pp. 433–440.
[Online]. Available: http://www.aclweb.org/anthology/
P/P06/P06-1055

[7] T. Matsuzaki, Y. Miyao, and J. Tsujii, “Probabilistic
CFG with latent annotations,” inProceedings of the
43rd Annual Conference of the Association for Com-
putational Linguistics (ACL-05), 2005, pp. 75–82.

[8] D. Prescher, “Inducing head-driven PCFGs with latent
heads: Refining a tree-bank grammar for parsing,”Ma-
chine Learning: ECML 2005, pp. 292–304, 2005.

[9] A. P. Dempster, N. M. Laird, and D. B. Rubin, “Maxi-
mum likelihood from incomplete data via theEM algo-
rithm,” Journal of the Royal Statistical Society, vol. 39,
no. 1, pp. 1–21, 1977.

[10] B. Huang and K. Knight, “Relabeling syntax trees
to improve syntax-based machine translation quality,”
in Proceedings of the Human Language Technology
Conference of the NAACL, Main Conference. New
York City, USA: Association for Computational Lin-
guistics, June 2006, pp. 240–247. [Online]. Available:
http://www.aclweb.org/anthology/N/N06/N06-1031

[11] Z. Huang, M. Cmejrek, and B. Zhou, “Soft syntactic
constraints for hierarchical phrase-based translation
using latent syntactic distributions,” inProceedings of
the 2010 Conference on Empirical Methods in Natural
Language Processing. Cambridge, MA: Association
for Computational Linguistics, October 2010, pp.
138–147. [Online]. Available: http://www.aclweb.org/
anthology/D10-1014

[12] W. Wang, J. May, K. Knight, and D. Marcu, “Re-
structuring, re-labeling, and re-aligning for syntax-
based machine translation,”Computational Linguistics,
vol. 36, pp. 247–277, June 2010.

[13] W. Wang, K. Knight, and D. Marcu, “Binariz-
ing syntax trees to improve syntax-based ma-
chine translation accuracy,” inProceedings of
the 2007 Joint Conference on Empirical Meth-
ods in Natural Language Processing and Com-
putational Natural Language Learning (EMNLP-
CoNLL), 2007, pp. 746–754. [Online]. Available:
http://www.aclweb.org/anthology/D/D07/D07-1078

[14] T. Chung, L. Fang, and D. Gildea, “Issues con-
cerning decoding with synchronous context-free
grammar,” in Proceedings of the ACL 2011 Con-
ference Short Papers. Portland, Oregon: Associa-
tion for Computational Linguistics, 2011. [Online].
Available: http://www.cs.rochester.edu/∼gildea/pubs/
chung-fang-gildea-acl11.pdf

[15] F. J. Och, “Minimum error rate training for statistical
machine translation,” inProceedings of the 41th Annual
Conference of the Association for Computational
Linguistics (ACL-03), 2003. [Online]. Available: http:
//www.isi.edu/∼och/acl03.pdf

[16] D. Chiang, “Hierarchical phrase-based translation,”
Computational Linguistics, vol. 33, no. 2, pp. 201–228,
2007.

[17] K. Papineni, S. Roukos, T. Ward, and W. Zhu, “BLEU:
A method for automatic evaluation of machine
translation,” in Proceedings of the 40th Annual
Conference of the Association for Computational
Linguistics (ACL-02), 2002. [Online]. Available: http:
//acl.ldc.upenn.edu/P/P02/P02-1040.pdf

[18] P. Koehn, “Statistical significance tests for machine
translation evaluation,” in2004 Conference on Em-
pirical Methods in Natural Language Processing
(EMNLP), Barcelona, Spain, July 2004, pp. 388–395.

[19] L. Huang, H. Zhang, D. Gildea, and K. Knight,
“Binarization of synchronous context-free gram-
mars,” Computational Linguistics, vol. 35,
no. 4, pp. 559–595, 2009. [Online]. Avail-
able: http://www.mitpressjournals.org/doi/pdf/10.
1162/coli.2009.35.4.35406

158




