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Abstract 1.2 Agenda-based user modelling

Recent work by Schatzmann et al. (2007) has presented a
new technique for user simulation based on explicit rep-
resentations of thaser goaland theuser agendawhich
provide compact models of the dialogue context and the
user’s “state of mind” and are dynamically updated dur-
ing the dialogue. Experimental results with the statis-
tical POMDP-based Hidden Information State dialogue
system (Young et al., 2007; Thomson et al., 2007) show
that a competitive dialogue policy can be learnt even with
handcrafted user model parameters.

Recent work in the area of probabilistic user sim-
ulation for training statistical dialogue managers
has investigated a nemgendabased user model
and presented preliminary experiments with a
handcrafted model parameter set. Training the
model on dialogue data is an important next step,
but non-trivial since the user agenda states are
not observable in data and the space of possible
states and state transitions is intractably large.
This paper presents a summary-space mapping
which greatly reduces the number of state tran-

sitions and introduces a tree-based method for
representing the space of possible agenda state
sequences. Treating the user agenda as a hid-
den variable, the forward/backward algorithm
can then be successfully applied to iteratively es-

1.3 Training on real data

While this result is useful for bootstrapping a prototype

DM when no access to dialogue data is available, train-
ing the agenda-model on real human-computer dialogue
data is an important next step. Training avoids the ef-

fort and expertise needed to manually set the model pa-
rameters and ensures that the learned system policy is
optimized for human dialogue behaviour rather than the
handcrafted simulator. The implementation of a suitable
1.1 Statistical user simulation training algorithm for the agenda-based user model, how-
A key advantage of taking a statistical approach to dis€ver is non-trivial s_ince the user agenda and goal state_s
logue manager (DM) design is the ability to formalise de@'® not observable in data. Moreover, the space of possi-
sign criteria as objective reward functions and to learn afl€ States and state transitions is intractably large.
optimal dialogue policy from human-computer dialogue .

data (Young, 2002). The amount of suitably annotateaj'4 Paper overview

in-domain data required for training a statistical systeniThis paper reviews the agenda-based user model (Sec-
however, typically exceeds the size of available dialogugon 2) and presents an Expectation-Maximization (EM)-
corpora by several orders of magnitude and it is thubased training method (Section 3) which models the ob-
common practise to use a two-phased simulation-basedrvable dialogue data in terms of a sequence of hidden
approach. First, a statistical model of user behaviowrser states. Section 4 discusses the tractability prob-
is trained on the limited amount of available data. Théems associated with the vast state space and suggests
trained model is then used to simulate any number of da summary-space mapping for state transitions. Using
alogues with the interactively learning dialogue managen efficient tree-based method for generating state se-
(Levin et al., 2000; Scheffler and Young, 2002; Pietquinguences on-the-fly, the forward/backward algorithm can
2004; Georgila et al., 2005; Lemon et al., 2006; Riesethen be applied to iteratively estimate the model parame-
and Lemon, 2006; Schatzmann et al., 2006). ters on data. Section 5 concludes with a brief evalution.

timate the model parameters on dialogue data.

1 Introduction
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2 Agenda-based user simulation Dialogue acts can also be temporarily stored when ac-
tions of higher priority need to be issued first, hence pro-
viding the simulator with a simple model of user memory
The agenda-based model introduced by Schatzmann et@ee Fig. 5 for an illustration). When using argram
(2007) formalises human-machine dialogue at a semanti@sed approach, by comparison, such long-distance de-
level as a sequence of states and dialogue.aétsany pendencies between dialogue turns are neglected unless
time ¢, the user is in a stat§, takes actioru,, transi- n is setto a large value, which in turn often leads to poor
tions into the intermediate staf, receives machine ac- model parameters estimates.

tion a,,, and transitions into the next stat¢ where the Another, perhaps less obvious, advantage of the

2.1 User simulation at a semantic level

cycle restarts. agenda-based approach is that it enables the simulated
user to take the initiative when the dialogue is corrupted
S—ay,—85 —an—>8" —- - (1) by recognition errors or when the incoming system ac-

tion is not relevant to the current task. The latter point
Assuming a Markovian state representation, user bes critical for training statistical dialogue managers be-
haviour can be decomposed into three modé1&:,[S)  cause policies are typically learned from a random start.
for action selection(S’|a,, S) for the state transition The “dialogue history” during the early training phase is
into ", and P(S"|am, S") for the transition intoS”.  thus often a sequence of random dialogue acts or dia-
Dialogue acts are assumed to be of the faot(a=x, |ogue states that has never been seen in the training data.
b=y,...), whereact denotes the type of action (such asthe stack of dialogue acts on the agenda enables the user

hello, inform or reques} and act items=x andb=y de-  model to take the initiative in such cases and behave in a
note slot-value pairs, such fmd=Chineser stars=5as  goal-directed manner even if the system is not.

described in (Young et al., 2005).
2.3 Action selection and state transition models
2.2 State decomposition into goal and agenda As explained in detail in (Schatzmann et al., 2007), the
Inspired by agenda-based approaches to dialogue matecomposition of the user stateinto a goalG and an
agement (Wei and Rudnicky, 1999; Lemon et al., 2001agendaA simplifies the models for action selection and
Bohus and Rudnicky, 2003) the user state is factored intate transition. Since the agenda (of lengith is or-
an agendal and a goat7. dered according to priority, wittll[ V] denoting the top
and A[1] denoting the bottom item, forming a user re-
S =(4,G) and G =(C,R) (2) sponse is equivalent to poppingitems of the top of the
stack. UsingA[N —n+ 1..N] as a Matlab-like shorthand
During the course of the dialogue, the géaénsures that notation for the topn items on 4, the action selection
the user behaves in a consistent, goal-directed manngfodel can be expressed as
G consists of constraint§’ which specify the required
venue, eg. “a centrally located bar serving beer”, and re- P(ay|S) = d(au, AIN=n + L.N)P(n|A,G)  (3)
questsiz which specify the desired pieces of informationwheres(p, q) is 1 iff p = ¢ and zero otherwise.
eg. “the name, address and phone number of the venue”.The state transition modelsP(S’|a,,S) and
The user agend4 is a stack-like structure containing P(5”|a,,,S’) are rewritten as follows. Lettingd’
the pending user dialogue acts that are needed to eliciénote the agenda after popping aff, and using
the information specified in the goal. At the start of theN’ = N — n to denote the size of’, we have
dialogue a new goal is randomly generated using the sys- . . . y
tem database and the agenda is populated by converting Al = Al Vie[L.N]. )
all goal constraints intinform acts and all goal requests Using this definition ofA’ and assuming that the goal
into requestacts. Abyeact is added at the bottom of the remains constant when the user executgshe first state
agenda to close the dialogue (cf. Fig. 5 in the Appendix.}ransition depending o, is entirely deterministic:
As the dialogue progresses the agenda is dynamically P(S'|aw,S) = P(A,G|an, A,G)
updated and acts are selected from the top of the agenda “ | N
to form user acts,,. In response to incoming machine = (AL A[LNDIG, G). (5)
actsa,,,, new user acts are pushed onto the agenda and mae second state transition basedagn can be decom-
longer relevant ones are removed. The agenda thus seryggsed intagoal updateandagenda updatenodules:
as a convenient way of tracking the progress of the dia- " ,
logue as well as encoding the relevant dialogue history. P(S"am, 5°)
= P(A//|am7 A/, GH) P(G”|am7 G/) . (6)

The termgialogue actanddialogue actiorare used inter-
changeably here. agenda update  goal update
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3 Model Parameter Estimation 3.2 An EM-based approach

3.1 The user state as a hidden variable The direct optimization of£(#) is not possible, how-
L . . ever, an iterative Expectation-Maximization (EM)-based

Es'umatmg}he paramet.ers of t.h? actllon selection a proach (Dempster et al., 1977) can be used to find a

state transition models is non-trivial, since the goal an ocal) maximum of the latent variable model likelihood.

agenda states are not observable in training data. Usi g : it
. .. Using Jensen’s inequality, any distributi can be
Previous work on the state-based approach to statlsth?fedgto obtain a Iovx(/qer bo)l/md ‘);1(9) 90X)

user simulation (Georgila et al., 2005; Lemon et al., 2006;
Rieser and Lemon, 2006) has circumvented this problem £(6) =
by annotating training data with dialogue state informa-

tion and conditioning user output on the observable dia- 1ngq(x)w > Zq(x) log w
logue state rather than the unobservable user state. While % q(X) X q(X)
this simplifies the training process, providing the neces- def
sary annotation requires a considerable effort. If done = F(a(X),0). (14)
manually, the process is often expensive and it can dginceL(6) is always greater or equal to the “negative free
difficult to ensure inter-annotator agreement. Using arnergy”F(q(X), 6) the problem of maximizing:(#) is
automatic tool for dialogue state annotation (Georgila etquivalent to maximizingr(q(X), #). Starting from ar-

al., 2005) can improve efficiency, but the development dbitrarily selected model parameters, EM iterates by alter-
the tool itself is a time-consuming process. nating an E-step and an M-step.

The parameter estimation approach presented hereDuring the E-step, the distributiogf®*)(X) over the
avoids the need for dialogue state annotation by modatent variables is estimated for fixed model parameters
elling the observable user and machine dialogue acts #*~")
terms of ahiddensequence of agendas and user goal _
states. More formally, the dialogue dafacontaining ¢ M (X) = argff(l%})(f(q(X)’e(k D). as)

dialogue turnd to T’ o ) )
It can be shown that this is achieved by setting

D= {au7 am} = {am,la Ay, 1-++y O, T au7T} (7) q(k) (X) _ P(X|D, 0(1@—1)). (16)
is modelled in terms of latent variables Using Bayes rule and the law of total probability the RHS
X = {A,G} ®) of Eq. 16 can be expressed as
P(X|D,6*Y)
where B P(D|X,0%=D)p(x|0k-D) @
A = {A A, . Ap ALY ) > x P(DIX, 0¢=D)P(X|o¢=1)
G = {G1,GY,....Gr,GL}. (10) Resubstituting (7) and (8) into (17) completes the E-step:
Collecting the results from Section 2, and noting that™ (A, G)
from (5) the choice ofx deterministically fixes4’, the P(ay,am|A, G, 0" D)P(A, G|ok—D)
joint probability can hence be expressed as - > ac Plau.amlA, G, 9--D)P(A, G|o*-1)’
P(X,D) = P(A,G,ay,am) = (18)
T Th_e M-ste_p nov’l/ optim_izes-‘(q(X), ) with respect to
H P(nt‘At, Gt)P(A;/‘am,t, A:gy G;’)P(Gg|am7t, G;) 6 whilst hOIdlngq( )(X) fixed
t=1 ) ._ (k)
(11) 0\ = arg m;%x}"(q (X),0). (19)

The goal is to learn maximum likelihood (ML) values

for the model parameter seésuch that the log likelihood This is achieved by maximizing the auxiliary function

(k—1)y _ (k—1)
L(0) = log P(D|0) =log 3" P(X,Dl6)  (12) (6.6 )§P<X’D'9 )log P(X, DIP).
X

(20)
Substituting Eq. 11 into the above, differentiating with
respect to¥ and setting the result to zero, one arrives at
(13) the parameter reestimation formulae shown in Egs. 21-23
in Fig. 1.

is maximized

Oy = arg max L(6).
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- S, P(A; = A, Gy = Glay, am, 0%~ Y)5(ny,n)
P(nlA,G) = 21
(n]4,G) S, P(A; = A, Gy = Glag, am, 00—1)) (21)
P(AH|CL Al Gl/) Et P(A:S/ = A//v Ai/t = A/7 Gg = G//|alla Am, e(k_l))(s(am,t’ a’m) (22)
e > P(A, = A, GY = G"[aw, am, 8¢ D)5 (am,¢, am)
p(G//|a G/) — Zt P(G;ﬁl = GH? G; = G/‘au7am7 e(k_l))(s(a’fmt? a‘m) (23)
" Zt P(G:‘ = G/|auaamaa(k_l))é(am,taam)

Figure 1: Model parameter update equations for the action selection and agenda and goal state transition models. Note
thaté(n,, n) is one iffn, = n and zero otherwise. Similarly(a,, +, a.,) is one iffa,, ; = a,,, and zero otherwise.

4 Implementation 4.2 Agenda updates as a sequence of push actions

The estimates show that when no restrictions are placed
on A”, the space of possible state transitions is vast. It
In the Hidden Information State (HIS) Dialogue Systentan however be assumed tht is derived fromA’ and
(Young et al., 2007) used for the experiments presentdtiat each transition entails only a limited number of well-
in this paper, the size of the user and machine dialogu#efined atomic operations (Schatzmann et al., 2007).
action seté/ and M is More specifically, the agenda transition fromto A”
can be viewed as a sequence of push-operations in which
dialogue acts are added to the top of the agenda. In a
second "clean-up” step, duplicate dialogue acts, “empty”
Goals are composed o constraints taken from the acts, and unnecessapguest(acts foralr_egdy filled goa_l .
set of constraint§, and Ny requests taken from the set rgquest slots must be.removed but this IS a determinis-
of requestsk. Note that the ordering of constraints and_tIC progedL_Jre SO that '.t can be e.XC'UdEd in the follow-
requests does not matter, and there are no duplicate coid def"’at'o” fqr S'mp"c'“f- Considering only the push-
straints or requests. Using typical values for goal specifﬂpe@t'o,ns' the itemito N' at the bgttom C,’f the agenda
cations during previous HIS Dialogue System user triglE€main fixed and the update model is rewritten as follows:

(Thomson et al., 2007) the size of the goal state space ¢

7= () () = ()1

The size of the agenda state spat@epends on the  The second term on the RHS of Eq. 28 can now be fur-
number of unique user dialogue a{i§ as defined above ther simplified by assuming that every dialogue act item
and the maximum numbe¥, of user dialogue acts on (slot-value pair) inu,,, triggers one push-operation. This
the agenda. The maximum length of the agenda is @sumption can be made without loss of generality, be-
design choice, but it is difficult to simulate realistic di- cause it is possible to push an “empty” act (which is later

4.1 Tractability considerations

Ul ~10*> and  |M]|=~10° (24)

ﬁA//mm’ A/, G//)

P(A"[1.N"], A"[N +1..N")|ay, A'[L.N"], G")

§(A"[1..N'), A'[1..N"])
P(A"IN"+1..N"]|am, G").

C|
N¢

IR|
Ngr

50
4

8
3

) ~10".  (25)
(28)

alogues unless it is set to at ledé, = 8. If fully popu-
lated,.A therefore comprises the vast number of

Al =

|
o] = 10%°, (26)

(ltd] = Na)!

potential agenda stateand the number of parameters
needed to moddP(A”|a,,, A’, G") is of the order

|Ax M x AxG|~10%. 27)

removed) or to push an act with more than one item. The
advantage of this assumption is that the known number
M of items ina,, now determines the number of push-
operations. Henc&” = N’ + M and

P(A"[N'+1..N"]|am, G")

P(A"[N"+1..N'+M]|an[1..M],G") (29)

M

[1 P IN+i] | anli], G")
——— ——

=1

(30)

Apush Qcond

2Note that the order of agenda items matters and that thefeh€ expression in Eq. 30 shows that each itepii] in

are no duplicate items.
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operation is conditioned on the goal. For example, giveA.4 Representing agenda state sequences
that the itenx=y in a,,[¢] violates the constraints i@”,
one of the following might be pushed on#’: negate()
inform(x=z), deny(x=y, x=z) etc.

Let ay,sn, € U denote the pushed adt’ [N’ + | and
acong € M denote the conditioning dialogue act con
taining the single dialogue act item,,[i]. Omitting the
Dirac delta function in Eq. 28, the agenda update st
then reduces to the repeated application ptigh transi-
tion modelP(apysh|acond, G”). The number of parame-
ters needed to Modét(apysh|acona, G”) is Of the order

Given our estimate ofA| ~ 10%° for the size of the
agenda state space, the direct enumeration of all states
in advance is clearly intractable. The actual number of
states needed to model a particular dialogue act sequence,
"however, is much smaller, since agenda transitions are
restricted to push/pop operations and conditioned on dia-
qggue context. The training algorithm can exploit this by
generating state-sequences on-the-fly, and discarding any
state sequenc¥ for which P(X, D|6) = 0.

A suitable implementation for this is found in the

U x M x G| ~ 103, (31) form of a dynamically growing agenda-tree, which allows
agenda-states to be represented as tree-nodes and state

While still large, this number is significantly smaller thentransitions as branches. The tree is initialised by creating
the number of parameters needed to model unrestrictedroot node containing an empty agenda and then popu-

transitions fromA’ to A” (cf. Eq. 27). lating the agenda according to the goal specification as
N explained in Sect. 2. However, since the initial ordering
4.3 A summary space model for push transitions of dialogue acts on the agenda is unknown, all possible

To further reduce the size of the model parameter set apeérmutations of constraints and requests must be created,
make the estimation aP(a,ysnlacond, G”) tractable, it resulting in a row ofV¢!- Ng! initial agendas (cf. Fig. 2).

is useful to introduce the concept of a “summary space”,

as has been previously done in the context of dialogue Create a root node with
management (Williams and Young, 2005). First, a func- an empty agenda

tion ¢ is defined for mapping the machine dialogue act Generate all possible
acond € M and the goal stat€”’ € G from the space of initial agendas
machine acts\f and goal state_s_ to a smaller summary  ypqate leaf nodes
spaceZ. ,q of “summary conditions” based on a,, (push

items onto agenda)

O MXG v Zeopa With M XG| > |Zeonal- (32)
Pop a, where possible
Secondly, a “summary push action” spagg.,., is de-
fined, which groups real user dialogue acts into a smaller Prune tree and join
set of equivalence classes. Using a functigrsummary identical nodes
push actions are mapped back to “real” dialogue acts

Figure 2: Tree-based method for representing state se-

W Zpush = U With | Zpysn| < U] 33 quences.

Agenda state transitions can now be modelled in sum-

mary space using 4.4.1 Updating the tree based o,

P(apush|acond, G") = P(zpush|zcond)  (34) The dialogue is now “parsed” by growing the tree and
creating branches for all possible state sequences. Up-
wherezpusn € Zpush @Nzeond € Zeona and dates based on a machine dialogued@gtinvolve map-

— 4 (35) ping each item in,, to its corresponding summary con-
Zeond = cond, dition z..,q USing the functiony. For eachz,.,q a list
apush = W(Zpush)- (36)  of summary push actions, ., is generated, discarding
For the experiments presented in this paper, 20 sunjees Where(zpush|zcona) = 0. The summary push
o . actions are then mapped back to real push actions using
mary conditions and 20 summary push actions were de- .
. : B and used to create new agendas which are attached to
fined, with examples shown in Fig 6. The total number o . .
arameters needed to mode(z |eona) iS therefore _he tree as new branches. The probability of the tran_s_l-
P push|=cond tion/branch is computed as the product of the probabili-
| Zoond % Zyusn| = 400. (37) ties of the real push actions. (See Fig. 6 in the appendix
for a detailed illustration.)
The parameter set needed to model agenda transitions isThe leaf nodes are now cleaned up in a deterministic
now small enough to be estimated on real dialogue datgrocedure to remove empty and duplicate dialogue acts,
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to delete all dialogue acts belowlge() act, and to re- constraints inC”. 2) If a,,, contains a request for the slot
move all requests for items that have already been fillex] a new constraint=y is added taC”’ to form C”. The

in the user goal. (An exception to the latter is made folatter does not imply that the user necessarily responds to
requests that have just been added to the agenda, such thaystem request for any skt since the agenda update
the simulated user can re-request filled items.) model does not enforce a corresponding user dialogue act

4.4.2 Updating the tree based om,, to be issued.

In the next step, the tree is updated based on the o#6 Applying the forward/backward algorithm

served user aat,. This part simplifies to popping..  Using the summary space mapping for agenda transitions
from the top of the agenda wherever this is possibleyng simplifying assumptions for the goal update and ac-

Agendas which do not allow, to be popped off rep- tion selection model, the parameter update equation set
resent states with zero probability and can be discardegduces to a single equation:

In all other cases, a new node with the updated agenda
is attached to the tree. The branch is marked as a popX z,usn|2cond) =
transition and its probability is computed based on the

X Zk P(Zpush,k = Zpush Zcond,k = Zcond|au> Aam, 0)
number of items popped.

Zk P(Zcond,k = Zcond|aua am, 9)
4.4.3 Pruning the tree and joining identical nodes (39)
Once the update based ar is completed, the tree
is pruned to reduce the number of nodes and branch
First, all branches which were not extended during the d .
K = 2T observations and update steps.

alogue turn, i.e. branches wherg could not be popped . -
gueurm, | Whetg cou Popp The parameter update equation can now be efficiently

off the leaf node agenda, are removed. All remainin emented by applying the forward/backward algo
h ibl f iﬁg g g
branches represent possible sequences of agenda St&l m. Leto; (k) denote the forward probability of being

with non-zero probability for the dialogue acts seen s . :
P Y g statei after seeing the observations frairto &, and

far. In a second step, a more aggressive type of pruni . )
can be carried out by removing all branches which do n t Bi(k) _denote the backwan_:l probability of seeing the
observations fromt + 1 to K, given that we are in state

have a given minimum leaf node probability. After prun-

ote thatt is used here rather thansince every dialogue
f_u'rnt involves two state transitions, and there are hence

ing, the size of the tree is further reduced by joining node@fter update step:
with identical agendas. ai(k) = Pl(o1,0,... 00 = il0) (40)
4.5 Action selection and goal update model Bi(k) = P(0kt1,0k42,---,0K|xr =1,0) (41)

The action selection and goal update models experience

similar tractability problems as the agenda update mOdeétructed as described in Section 4.4. After the last obser-
but in both cases a straightforward solution was found

q tisfact its. To simplify th " ation K, all agenda items have been popped, so that the
r;rgti::fnz?jéff?(izﬁ;y Cr;)aSltthran%osrlrr]n\?a:?ablg c?;r:obne SCeaf node agendas are empty and can be merged to form a
assumed independent df andG. The probability dis- single end node. The forward/backward probabilities are

I . . now initialised usin
tribution P(n) over small integer values for (typically ¢

Based on the observations, a tree of agendas is con-

in the range from O to 6) can then be estimated directly B 1 i< NAINWI (42
from dialogue data by obtaining frequency counts of the ai(l) = Nc!Ng! 1< < Nc!Ng! (42)
number of dialogue act items in every user act. Bena(K) = 1 (43)

The goal update modé?(G"|a,,, G') is decomposed
into separate update steps for the constraints and requesisd then recursively defined for the update steps from
Assuming thatR” is conditionally independent of” %k =2tok = K — 1 using
givenC” it is easy to show that

(k) = i(k—1)ay 44
P&, &) a; (k) ;w Ja (44)

= P(R"|am,R,C"YP(C"|am, R, C"). (38) Bi(k)

The two update steps can be treated separately and imple-

mented deterministically using two rules: 1)/&f con- where the transition probability;; of transitioning from
tains an empty slat anda,, is a dialogue act of the form state: to j depends on whether it is a push or a pop tran-
inform(u=v,r=s,...) thenR” is derived fromR’ by setting sition. When the transition involves poppingtems off
u=v given that no other information in,, violates any the agendag,; equalsP(n). If the transition involves a
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sequence of push actions, thep is defined as the prod- 700
uct of the probability of the associated real push actions
(see Fig. 6 in the appendix for an illustration).

Using the forward/backward probabilities, one can
now compute the probability (i, ) of transitioning
from statei to statej at update step as

600 -
5004 e
e & T B o |
0 s 'Y Ak CERSEEEEEEEEEEEEY B S { A SRR
200
1004 /> AAAA

Number of leaf nodes

(Ka::B:(k +1 1
Tk(z7]) = aZ( )az']ﬁ]( + ) (46) 00 1 2 3 4 5 6 7 8 9 10 11 12 13 14
aENd(K) Dialogue turn
Finally, the push transition model parameters are up-

dated usi
ated using Figure 3: Graph showing the number of agenda tree leaf

Plemenlzema) 2 (ki | SPA=2p 0, SC=200na) TH(1:J)  nodes after each observation during a training run per-
push|<cond > (ki1 SC—2mnay Tt (029 formed on a single dialogue.

(47)
where the summation subscripts indicate if the summary EM iteration
push action (SPA),.s;, and summary condition (SC) 0 F————
Zeond Were used to transition frotinto j at stepk.

B0 b

a0
/’- —e—P(0_1|Mm)

The parameter estimation approach presented in this pa- 50 —=—PO_2M)
X X ——POM)

per was tested using a small corpus collected with the

HIS Dialogue System (Young et al., 2007; Thomson et

al., 2007; Schatzmann et al., 2007). The dataset ConSiﬁ@ure 4: Graph showing a monotonous increase in |og

of 160 dialogues from the tourist information domain,probability £(6) after each iteration of the EM algorithm.

recorded with 40 different speakers, each of whom com-

pleted 4 dialogues. In total, the corpus contains 6452 di-

alogue turns and 21667 words. All utterances were ma®-3 Comparison of real and simulated data

ually transcribed and annotated using the set of dialogyg initial evaluation of the simulation quality has been
act definitions described in Section 2.1. No dialogue Sta&rformed by testing the S|m||ar|ty between real and sim-
or user state annotation was needed. ulated data. Table 1 shows basic statistical properties
of dialogues collected with 1) real users, 2) the trained
agenda model and 3) the handcrafted baseline simulator
The user model was trained on the dialogue corpus d@sed by Schatzmann et al. (2007). All results were ob-
scribed above and Fig. 3 shows the number of agenda trggned with the same trained dialogue manager and the
leaf nodes during a typical training episode on a samplgame set of user goal specifications. Since the model aims
dialogue. For each machine dialogue act, the tree is €y reproduce user behaviour but not recognition errors,
tended and 1 or more new nodes are attached to each tRfly the subset of 84 dialogues with a semantic accu-
branch, so that the number of leaf nodes stays constantaicy above 90% was used from the real dialogue cérpus
increases. Pop operations are then performed where pQse results show that the trained simulator performs bet-
sible, the tree is pruned and identical nodes are joined $gr than the handcrafted baseline. The difference between
that the number stays constant or decreases. At the efi statistical properties of dialogues generated with the
of the dialogue, only a single leaf node with an emptyrained user model and those collected with real users is
agenda remains. not statistically significant with confidence of more than
When plotting the log probability of the data (Fig. 4),9506. Hence, based on these metrics, the trained agenda
it can be seen that the EM-based algorithm producesggodel appears to more closely match real human dia-
monotonically increasing curve (as expected). The alggogue behaviour. One may expect that a dialogue system
rithm quickly converges to a (local) optimum, so that ingrained on this model is likely to perform better on real
practise only a few iterations are needed. For illustratiofjsers than a system trained with the handcrafted simula-

purposes, the training run in Fig. 4 was performed on tweyy, put this is still an open research question.
dialogues. As can be seen the log prob of the individual

dialogues increases (top two lines), just as the log prob of 3Semantic accuracy was measured in terms of substitution,
the complete dataset (bottom line). insertion and deletion errors as defined by Boros et al. (1996).

5 Evaluation

Log probability

5.1 Dialogue training data

5.2 Training results
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RealUsers Tr. Sim  Hdc. Sim K. Georgila, J. Henderson, and O. Lemon. 2005. Learn-

Sample size 84 1000 1000 ing user simulations for information state update dia-
Dial. length 3.3@-0.53 3.38-0.07 4.04-0.19 log systems. IfProc. of EurospeechLisbon, Portugal.
Compl. rate  0.980.03  0.94:0.02  0.93-0.02 O. Lemon, A. Bracy, A. Gruenstein, and S. Peters. 2001.
Performance 16.281.01 15.32-0.34 14.63-0.50 The WITAS multi-modal dialogue system l. Proc.

. . - . of EurospeechAalborg, Denmark.
Table 1: Comparison of basic statistical properties of P g

real and simulated dialogue data (mef%% confidence O. Lemon, K. Georgila, and J. Henderson. 2006. Eval-
thresholds). Dialogue length is measured in turns, task uating Effectiveness and Portability of Reinforcement
completion rate is based on the recommendation of a cor- Léarned Dialogue Strategies with real users: the TALK
rect venue, and dialogue performance is computed by as- 10WnInfo Eval. InProc. of SLTPalm Beach, Aruba.
signing a 20 point reward for a successful recommend&. Levin, R. Pieraccini, and W. Eckert. 2000. A Stochas-
tion (0 otherwise) and subtracting 1 point for every turn. tic Model of Human-Machine Interaction for Learning
Dialog Strategies|EEE Trans. on Speech and Audio
Processing8(1):11-23.

_ O. Pietquin. 2004. A Framework for Unsupervised
This paper has extended recent work on an agenda-based earning of Dialogue Strategie$h.D. thesis, Faculte
user model for training statistical dialogue managers and Polytechnique de Mons.

presented a method for estimating the model paramet (°Rieser and O. Lemon. 2006. Cluster-based User Sim-

on human-computer_d|alogue datg. The approach mo “ulations for Learning Dialogue Strategies. Proc. of
els the observable dialogue acts in terms of a sequencecg p Pittsburgh, PA.

of hidden user states and uses an EM-based algorithm to _
iteratively estimate (locally) optimal parameter values. J- Schatzmann, K. Weilhammer, M.N. Stuttle, and

In order to make estimation tractable, the training al- > Young. 2006. A Survey of Statistical User Simu-
: . . . lation Techniques for Reinforcement-Learning of Dia-
gorithm is implemented using a summary-space mapping logue Management Strategi¢éER 21(2):97—126.

for state transitions. Agenda state sequences are repre-

sented using tree structures, which are generated on-tRe-Schatzmann, B. Thomson, K. Weilhammer, H. Ye, and
fly for each dialogue in the training corpus. Experimental S. Young. 2007. Agenda-based user simulation for
results show that the forward/backward algorithm can be Pootstrapping a POMDP dialogue system.Pioc. of
successfully applied to recompute the model parameters, 1LT/NAACL Rochester, NY.

A comparison of real and simulated dialogue data has. Scheffler and S. Young. 2002. Automatic learning of
shown that the trained user model outperforms a hand- dialogue strategy using dialogue simulation and rein-
crafted simulator and produces dialogues that closely forcement learning. IRroc. of HLT San Diego, CA.
r_natch statistical prope_rties of real data._WhiIe these inig_ Thomson, J. Schatzmann, K. Weilhammer, H. Ye, .
tial results are promising, further work is needed to re- a4 S. Young. 2007. Training a real-world POMDP

fine the summary state mapping and to fully evaluate the dialogue system. IiProc. of HLT/NAACL Workshop:
trained model. We look forward to reporting these results Bridging the Gap Rochester, NY.

in a future paper. X. Wei and A.l. Rudnicky. 1999. An agenda-based dia-
log management architecture for spoken language sys-
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7 Appendix

7.1 Sample dialogue and user state sequence

Initialisation (Generate goal constraints and requests and populate the agenda)

inform(type = bar) 7
inform(drinks = beer)
type = bar name = inform(area = central)
Co = drinks = beer Ry = addr = Ay = request(name)
area = central phone = request(addr)
request(phone)

L bye J

Sys 0 Hello, how may | help you?(Push 0 items onto the agenda) ve()
Usrl I'm looking for a nice bar serving beer(Pop 2 items off the agenda)
[ inform(area = central) T
type = bar name = request(name)
Ci = | drinks = beer Ry = | addr = Al = request(addr)
area = central phone = request(phone)
L bye() _
Sys 1 Ok, a wine bar. What price range@Add 1 constraint, push 2 items onto the agenda)

[ negate(drinks = beer)
type = bar B z:nform(prangf = chealp)
drinks — beer name = inform(area = central)

¢ = area = central Ry = addr = Az = request(name)
ran ; — chea phone = request(addr)
prange = p req?)est(phone)
L bye _
Usr 2 No, beer please!(Pop 1 item off the agenda)
Sys 2 A bar serving beer, correct?Push 1 item onto the agenda)
- af firm() .
 type = bar 1 B z.nform(prang_e = cheap)
; - name = inform(area = central)
drinks = beer
Cy = area — central Rs = addr = Az = request(name)
. - h phone = request(addr)
| prange = cheap | request(phone)
L bye() ]
Usr3 Yeah something cheap in the town centréop 3 items off the agenda)
i type = bar i . [ request(name)
;L drinks = beer , | rame= ;o request(addr)
Cc; = - R; = addr = Az =
area = central h - request(phone)
| prange = cheap | phone = | bye()
Sys 3 Murphy’s on Main Sg. serves cheap be€Fill 2 requests, delete agenda requests for filled slots)
[ type = bar ] name = Murphy's r
i = drmk:i = beer Ry — addr — Main Sq Ay = request(phone)
area = central bye()
phone = L
| prange = cheap |
Usr4 And what's the phone numberZPop 1 item off the agenda)
Sys 4 The number is 796 69 94(Fill 1 request)
type = bar /
; name = Murphy's
drinks = beer !
Cs = area — central Rs = addr = Main Sq As = [ bye() ]
- phone = 7966994

prange = cheap
Usr5 Thanks, goodbye! (Pop 1 item off the agenda)

Figure 5: Sample dialogue showing the state of the user goal and agenda. Note that systékvhatptice range?”
triggers the user aéhform(prange=cheapjo be pushed onto the agenda but it is not executed until turn 3 because
negate(drinks=beeris issued first.
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7.2 Sample agenda update transition using the summary-space mapping

a) affirm() {0.3}

Receive machine act inform(r=x) {0.5}
with M dia act items b)  affirm() {0.3} Execute push actions to
Generate all |nfffprm(s=y) {0.2} form new agenda nodes
Agenda A combinations of ¢ affirm0 0.3} —
| h acti inform(t=z) {0.2} —
real push actions d)  affirm() 03} a) |=| {0.15}
a,, = confreq(p=q,r) null() 0.1} L |
. ) e) affirm(p=q) {0.4} =
Map dialogue act to 1. affirm() {0.3} . _ b) |=
M summary conditions affirm(p=q) {0.4} inform(r=x) {0.5} {0.06}
- {0.3} f =]
2. inform(r=x) {0.5} ¢) |=| {o0.06}
1. ReceiveConfirmAXok [p=q] inform(s=y) {0.2}
2. ReceiveRequestA [r] inform(t=z) {0.2}
null() {0.1}
Generate list of 1. PushAffirm {0.3}
summary push actions PushAffirmAX {0.4} Map summary push
with non-zero probability PushNothing {0.3} actions to real

2. PushinformAX {0.5} push actions
PushinformBY {0.4}
PushNull {0.1}

Figure 6: Simplified example illustrating the summary space technique for agenda updates.

The incoming machine act in this example is assumed t@,be-confreq(p=q,r) i.e. an implicit confirmation of
the slot-value paip=qg and a request for the slot The update step proceeds as follows:

1. Based on the current state of the goal (not shown here), the first step is to map each dialogue act item (slot-
value pair) to a summary condition, ;. Given that the confirmatiop=q in the example does not violate any
of the constraints in the user goal, it is mappedRexeiveConfirmAXok[p=q]The request for is mapped to
ReceiveRequestA[r]

2. Alist of summary push actions,, ., each with probabilityP (z,.,s1|2cond), IS NOW generated for each summary
conditionz.,,q4. A (shortened) list of examples is shown in the figure. The summary push &eigirinformAX
for instance, implies that amform act with the requested slot (in this cagées pushed onto the agenda. Note
that summary push actions with zero probability can be discarded at this point.

3. The summary push actions are now mapped to real push actions. This is a 1-to-1 mapping for most summary
push actions, but some summary push actions can map to several real push actions. This is illustrated in the figure
by the summary push actidtushinformBYwhich implies that the corresponding real push action ignéorm
dialogue act containing some slot-value @iy other than the requested slot, in this casg or t=z. In such
cases, the probability mass is split evenly between the real push actions for a summary push action, as shown in
the figure.

4. Using one real push action from each summary condition, a list of all possible combinations of push actions is
now generated. Each combination represents a series of dialogue acts to be pushed onto the agenda. As shown in
the figure, each combination is used to create a new agenda. The transition probability is computed as the product
of the real push actions that were used to make the transition.

Note that the set of summary conditions and summary actions is independent of the number of concepts and database
entries, allowing the method to scale to more complex problem domains and larger databases.
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