[International Conference on Machine Translation of Languages and Applied Language Analysis, National Physical Laboratory, Teddington, UK, 5-8 September 1961]

# AN APPROACH TO THE SEGMENTATION PROBLEM IN SPEECH ANALYSIS AND LANGUAGE TRANSLATION

by

GERARD SALTON and R.W. THORPE

### INTRODUCTION

THE generation of proper word boundaries is an important part of several problems in information processing. Specifically, the speech recognition problem is often described as the production of a phonemic transcript, followed by the assembly of phonemes into complete words.<sup>1,2,3,4</sup> The automatic translation of certain natural or artificial languages, such as, for example, Chinese and Japanese to English,<sup>5,6,7</sup> or English to Braille<sup>8</sup> also requires the generation of words in the output language which may correspond either to several items of input, or to only part of an input item.

The segmentation problem is often complicated by the fact that each item of input may be associated with several possible output correspondents, only one of which is acceptable in any given context. Frequently, the reduction of each set of multiple correspondents is at least partly dependent upon the proper recognition of word boundaries. The English phoneme sequence/aban/ might, for example, correspond to the indefinite article "a" followed by the noun "ban", or it might form a verb or noun prefix as in "abandon", or "abandonment". Similarly, the Chinese character  $\square$  (dzi), which may be translated as "self" when standing alone, may in combination with other characters be translated variously as "freedom", "self-defence", "ego", "originality", "naturally", "freely", "liberalism", and so on.

The generation of syntactically well-formed sentences in the output language is a common requirement for the set of problems under consideration. Since the material being processed does not, however, consist of complete syntactic units, it is first necessary to generate the appropriate structural information before any method based on syntax can be used.

Two principal techniques are therefore proposed for the recognition of

(98026)

word boundaries and the elimination of multiple correspondents. The first consists of a *particle analysis* designed to attach to each output correspondent, whether consisting of a complete word or not, a set of grammatical indicators giving information about the possible role of the given correspondent in a sentence. The second is a type of syntactic *analysis* which compares certain predicted structural features in each sentence with the syntactic Information actually attached to each output correspondent. The acceptable correspondents are those for which the grammatical indicators match the predictions. Methods are given to select a single acceptable correspondent from each set of multiple correspondents and to assemble particles which do not constitute complete words into complete output items.

## THE PHONEMIC ENGLISH INPUT

To demonstrate the techniques involved, machine shorthand as produced by a stenotype device is used as input. Since the vowel letters and many consonant letters are written according to sound rather than according to the normal English spelling, the machine shorthand units, or *strokes*, represent linguistic units of the spoken language. Each stroke may correspond in written English to one syllable, one complete word, or one phrase consisting of several words. Moreover, because of the limited number of keys available on the stenotype machine, a special transcription system is used which substitutes a set of letters available on the keyboard for each English phoneme to be represented. A number of special shorthand abbreviations, similar to the contractions used in Braille, are also provided to represent certain high frequency words, affixes or phrases.<sup>9</sup>

In order to decode the abbreviations and phrases, a small dictionary is used, including approximately one thousand high frequency shorthand strokes. Each stroke is listed together with a set of English correspondents. Each correspondent in the dictionary is furnished with a set of grammatical indicators. As an example, the shorthand stroke A has correspondents "a" and "an". The grammatical indicators for "a" show that, in English, this correspondent can be an article, a verb prefix, an adjective prefix, a noun prefix, or an adverb prefix. An excerpt from the dictionary of abbreviations and phrases used in the computer experiments is shown in figure 1.\*

To keep the dictionary down to reasonable size, only a relatively small proportion of the many thousands of possible English words and syllables are included in the dictionary. Many output correspondents will therefore not be found in the dictionary during the look-up operation and no grammatical information is available for these correspondents

(98026)

<sup>\*</sup> A Univac I computer was used to perform the experimental work.

| ٠ | BACHINE SHORES     | 03 | DICTIONNEY<br>SERVAL MANDER                                                               | ENGLISH CONNESPONDENTS WITH<br>BRANMATICAL MUCATORS | ITS WITH<br>ATORS |                  | • |
|---|--------------------|----|-------------------------------------------------------------------------------------------|-----------------------------------------------------|-------------------|------------------|---|
| • | (<br>              | {  | U01-00417000 MAVE TOU 1                                                                   | 1 1/10                                              |                   |                  | • |
| ٠ | 4                  |    | 001-00414000 STEAMMARP B                                                                  |                                                     |                   |                  | ٠ |
| • | 11                 |    | 001-06419-00 14 THE 1<br>V4-TU                                                            | 1 AS THE & AS 17<br>C1/RN-10 C1/RO-P3               | J STAELT          | * \$*[N<br>04.1N | • |
| • | 44 M               |    | 001-0r424400 STANU<br>14:14                                                               |                                                     |                   |                  | ٠ |
| • | 61 artes           |    | 002-00164000 574A1144 8                                                                   |                                                     |                   |                  | ۰ |
| ė | BTARLY             |    | 001-00421400 STATENEAT =<br>M1                                                            |                                                     |                   |                  | • |
| • | BTART              |    | 145100 57441 x                                                                            |                                                     |                   |                  | ٠ |
| ٠ | 41ert              |    | 002-0r14er00 STEALIN a<br>b1                                                              |                                                     |                   |                  | ٠ |
| ٠ | 21CPac5            |    | vožepniežnoc stekila.<br>I.2                                                              | 1 \$76N73UN =-                                      |                   |                  | • |
| ٠ | e1gue              |    | WA1-QARZZAQO STERUTYPT A<br>V1.61                                                         |                                                     |                   |                  | • |
| ٠ | 67 gunge           |    | wož-briđenog stinčl – »<br>Lž                                                             |                                                     |                   |                  | ٠ |
| • | 47¢UM              |    | UD1-0-623400 80HE11ME N                                                                   |                                                     |                   |                  | ٠ |
| ٠ | ₿ T MA             |    | 001-00424000 15 7441 2<br>13/24/04-34                                                     |                                                     |                   |                  | ٠ |
| ٠ | 314.Pa.MR          |    | 601-04425400 (EXCLARATION FUINT)<br>50                                                    | PUINT) 8                                            |                   |                  | • |
| • | \$1¢               |    | 901-01420-00 45 TU 1 19 70<br>C1/440-N1/RO 44-01/K0                                       | 18 70                                               |                   |                  | • |
| ٠ | 40 T.G             |    | Uni-Onstinoo is tu BE I<br>Verpiny                                                        | 1 45 TO 46 *                                        |                   |                  | • |
| ٠ | 810Pb              |    | 001-01428700 97044<br>4                                                                   |                                                     |                   |                  | ٠ |
| ٠ | \$1 <sup>0</sup> 1 |    | 001-0429000 45 14 THE 1 15 TO THE COLOCA29000 45 14 THE COLOCA29000 45 14 THE COLOCA20010 | 13 TO TME =<br>Ve-PO-TO                             |                   |                  | ٠ |
| ٠ | \$1045             |    | Uni-Drejundo as fatt<br>CD/A0-40                                                          |                                                     |                   |                  | ٠ |
| • | \$Ten              |    | 001-04431400 114784404471 04 PARKI                                                        | Car Parki +                                         |                   |                  | • |
| • |                    |    |                                                                                           |                                                     |                   | 1                | • |

Dictionary of Abbreviations and Phrases Including Grammatical Indicators Fig. 1

(98026)

An output sample showing the transliterated text after substitution of English letter clusters for the corresponding shorthand clusters, and after the dictionary look-up operation is shown in *figure 2*. It will be noted that the English output includes incorrect word forms and multiple correspondents. In some cases both correct and incorrect word forms are generated. In other cases, several morphologically correct forms are produced, and it is necessary to use criteria extracted from the context to choose the appropriate correspondent. A representative sample of the types of multiple correspondents which may arise is shown in *Table 1*.

|          | TABLE        | 1    |           |    |
|----------|--------------|------|-----------|----|
| MULTIPLE | CORRESPONDEN | ICES | GENERATED | BY |
|          | DICTIONARY   | LOOK | -UP       |    |

| Type of Ambiguity | Shorthand                                          | Possible Translations                                                          |
|-------------------|----------------------------------------------------|--------------------------------------------------------------------------------|
| Morphological     | TPHAGS<br>OFRGS<br>PWHREF<br>EUPB<br>TKUS<br>TREUL | <pre>naings, nation offertion, offerings blef in dus (industrial) tril</pre>   |
| Syntactic         | OPGS<br>TKEUG<br>WE<br>URBGT                       | openings, option<br>dig, dying<br>when, we<br>you shall go it,<br>your account |
| Semantic          | SHRED<br>SPORT<br>TKEUG                            | shred, sled<br>sport, support, export<br>dying, dyeing                         |

(98026)

| {                                        | MAKEN | RUNNER                                  | INDICATO  | INDICATORS FOR SOME ITEMS | rems    |   |   |
|------------------------------------------|-------|-----------------------------------------|-----------|---------------------------|---------|---|---|
|                                          |       | 645-19360404 TO BE                      | •         |                           | -       |   | • |
| <u>و</u><br>•                            |       | 643-15343404 TOB                        |           |                           |         |   | • |
| •                                        |       | V_MO 20207ET1-2AM<br>VA.AM              | -         |                           |         |   | • |
| •<br>•                                   |       | 1340 CO642EE1-575                       | I OMAL    | # <sup>1</sup>            |         |   | • |
| £                                        |       | 10111111111111111111111111111111111111  |           |                           |         |   | • |
| • <sup>1</sup> <sup>1</sup> <sup>1</sup> |       | 643-13303644 TUBS                       | •         |                           |         |   | ٠ |
| • رو                                     |       | 92 1022621-515<br>02                    | i MAVE    |                           |         |   | • |
|                                          |       | 445-13343201 F                          | •         |                           |         |   | • |
| -                                        |       | Line detcati-st                         | 1 \$11714 | A BHIT                    | 3 54778 | • | • |
| ● TKPENAAS                               |       | 643-13413480 6LAS                       | 1 94.487  | -                         |         |   | ٠ |
| 2                                        |       | 04 500000 1-978                         | -         |                           |         |   | • |
| £ng ∫ ●                                  |       | 41 69406461-34 <b>9</b><br>94           | 1 2464    | •                         |         |   | • |
|                                          |       | HI 60660461544                          | ļ<br>-    | •                         |         |   | • |
| ţ                                        |       | 445-13463444 TERM                       | •         |                           |         |   | • |
| a                                        |       | 14-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1- | *         |                           |         |   | • |
| a                                        |       | 643-13433200 I                          | •         | •                         |         |   | • |
| • <sup>ا</sup> ر استد                    |       | 445-19440404 They And                   | *         |                           |         |   | ٠ |
| • <sup>1</sup> THEA                      |       | 6+3+1 9443404 THER                      |           |                           |         |   | ٠ |
| +atu                                     |       | 642-13470200 1000168)<br>C)             | -         |                           |         |   | • |
| -                                        |       | 14<br>34 00204061-599                   | a         |                           |         |   | • |
| •                                        |       |                                         |           |                           |         |   | • |

Assembled Shorthand Output Including Grammatical Indicators Fig. 2

(98026)

#### THE PARTICLE ANALYSIS

The particle analysis is designed to assign syntactic indicators to correspondents not already furnished with grammatical information, and to reduce the ambiguity in the grammatical indicators found during dictionary look-up. This is done by considering in turn every grammatical indicator of each English correspondent attached to a given shorthand stroke. A list of the principal grammatical indicators is given in *Table 2*. The first character of the indicator is used to represent the word type, and the second character distinguishes various cases within each word type. As an example, AS is the indicator used for adjective suffixes, and NP represents noun prefixes.

Shorthand strokes are first partitioned to determine whether one of a set of recognizable suffixes is present. If so, the grammatical indicators derived from the suffix, as shown in *Table 3*, are tested for compatibility with the indicators attached to the stems; correspondents with incompatible stem and suffix indicators are eliminated. Correspondents consisting of several English words are similarly tested, and incompatible phrases such as articles not followed by either adjectives, adverbs, or nouns are eliminated.

The particle analysis then concentrates on those correspondents not provided with grammatical indicators, or provided with particle indications. In particular, correspondents without grammatical indication or with a prefix indication are given a special identification whenever one of the correspondents of the succeeding item is provided with in infix or suffix indicator. Such a prefix can later be attached to the corresponding suffix supplied by the next shorthand item. Similarly, correspondents without grammatical indication, or with an infix or suffix indicator, are modified if the preceding item includes a correspondent with a prefix indication.

A simplified flowchart for the particle analysis is shown in *figure 3*, The sample analysis of *figure 4* exhibits the grammatical indicators before and after particle analysis (columns 3 and 4). The correspondent of stroke 5, for example, which could not be found in the dictionary is given a special infix marker (L2) because it is followed by an adverb suffix (HS indication), and preceded by a correspondent with prefix indicators (VP,AP). Similarly the correspondent of word 16 is recognized as an adjective prefix, and word 24 as a participle infix, even though no grammatical information was originally available for these two correspondents. In each case the grammatical indicator used as a criterion in the modification process is circled in column 3 of *figure 4* and grammatical indicators of adjacent shorthand items are suitably modified as shown in column 4 of *figure 4*. The L2 marker is used for all infix or suffix particles, and the corresponding shorthand strokes are treated as parts of a single item during syntactic analysis.

It is seen that, as a result of the particle analysis, all but three

(98026)

# TABLE 2 GRAMMATICAL INDICATORS

| Grammatical | Indicators |                                     |
|-------------|------------|-------------------------------------|
| Character   | Position   | Definition                          |
| 1           | 2          |                                     |
| A           |            | Adjectives                          |
| В           |            | Participles                         |
| С           |            | Conjunctions and Style Indicators   |
| L           |            | Particle Indicators                 |
| N           |            | Nouns                               |
| P           |            | Pronouns                            |
| R           |            | Prepositions                        |
| Т           |            | Articles                            |
| V           |            | Verbs                               |
|             |            |                                     |
|             |            |                                     |
|             | 1          | Indicators marking distinctions     |
|             | 2          | within each group, such as N1       |
|             | 3          | for singular nouns, N2 for plural   |
|             | 4          | nouns, and N3 for possessive nouns. |
|             | P          | Prefix Indicators                   |
|             | М          | Infix indicators                    |
|             | S          | Suffix Indicators                   |
|             | 0          | Complete Word Indicators            |
|             |            |                                     |

(98026)

of the correspondents shown in *figure 4* are furnished with grammatical indicators. Moreover, since particle indicators have been eliminated, the average number of indicators attached to a given correspondent is now much smaller. The probability of ambiguity arising in the predictive analysis is therefore considerably reduced.

| Shorthand<br>Suffix | English Correspondents        | Derived Grammatical<br>indicator |
|---------------------|-------------------------------|----------------------------------|
| PLTS                | ments<br>mities<br>mates      | N2<br>N2<br>N2, V2               |
| PLT                 | ment<br>mity<br>mate          | N1, V1<br>N1<br>V1, N1, A0       |
| BGS                 | ction<br>ctious               | N1<br>A0                         |
| GS                  | tion<br>ings<br>tious<br>tial | N1, V1<br>N2, V2<br>A0<br>A0, N1 |
| TS                  | ities<br>ates                 | N2<br>N2, V2                     |
| D (alone)           | ed                            | B0, V1                           |
| G                   | ing                           | N1, A0, B0, V1                   |
| S (alone)           | s                             | N2, V2                           |
| Т                   | ity<br>ate                    | N1<br>V1, N1, A0                 |

TABLE 3 GRAMMATICAL INDICATORS DERIVED FROM SUFFIXES

(98026)



SIMPLIFIED FLOWCHART FOR PARTICLE ANALYSIS Fig. 3

(98026)

| 1  | Short-   | Selected   | Grammatic             | al Indicator: | 3          | Function    |
|----|----------|------------|-----------------------|---------------|------------|-------------|
|    | hand     | English    | After                 | After         | After      | Selected by |
|    | Original | Correspon- | Dictionary            | Particle      | Predictive | Predictive  |
|    |          | dents      | Look-up               | Analysis      | Analysis   | Analysis    |
| 1  | TPH      | in         | RO                    | RO            | RO         | Infinity    |
| 2  | 1938     | 1938       | -                     | -             | N1         | Prep. Comp. |
| 3  | A        | a          | TO                    | _T0           | <b>T</b> 0 | Subject     |
| 4  | EPB      | en )       | VP, AP, BS, <u>V8</u> | _f→®)"        | HO         | Adverb Es.  |
| б  | TEUR     | tir }      |                       | L2            | HO         | Adverb Es.  |
| 6  | HREU     | ly J       | (H), AS, NP, AP       | L IS          | HO         | Adverb Es.  |
| 7  | TPHU     | new        | AP, HO                | AO, HO        | AO         | Adj. Master |
| 6  | APB      | and        | CO, C1                | CO, C1        | CO         | Infinity    |
| 9  | TKEUF    | different  | AO                    | AO 🛛          | A0         | Subject     |
| 10 | TEUP     | tip        | -                     | -             | N1.        | Adj. Master |
| 11 | F        | of         | RO                    | RO            | RO         | Prep. Es.   |
| 12 | HREUT    | 11t        | (AP, NP, VP, HP       | - AOZ         | A0         | Prep. Comp. |
| 13 | SORS     | sors       | - N2, V2              | N2, V2        | N2         | Adj. Master |
| 14 | RBGS     | ,          | CO                    | CO            | CO         | Infinity    |
| 15 | Т        | the        | TO                    | TO            | TO         | Prep. Comp. |
| 16 | TPHRU    | flu }      |                       | T AQZ         | AO:        | ADJ. Master |
| 17 | RES      | res }      | NP, AP, VP, AM        | 12            | AO         | Adj. Master |
| 18 | EPBT     | ent )      | (AS), NS              |               | AQ         | Adj. Master |
| 19 | HRAPL    | lam )      |                       | i -           | N1         | Adj. Master |
| 20 | P        | p }        |                       | { L2          | N1         | Adj. Master |
| 21 | RBGS     | •          | CO                    | . CO          | C0         | Infinity    |
| 22 | WAS      | Was        | V4                    | <u>V</u> 4    | V4         | Pred. Head  |
| 23 | EUPB     | in )       | RO, HO                | <u>(</u> 80)2 | BÔ         | Verb Comp.  |
| 24 | TRO      | tro        | <u> </u>              | ī2            | BO         | Verb Comp.  |
| 25 | TKUS     | duce }     | /VS, NM               | { L2          | BÓ         | Verb Comp.  |
| 28 | р        | ∫ had      | V4                    | ZZZ           |            |             |
| ~0 | U        | ) a /      | (BS), NS, VS, AS      | 1 12          | BO         | Verb. Comp. |
| 27 | TOT      | to the     | RO-TO                 | RO-TO         | RO-TO      | Prep. Comp. |
|    |          | (a)        | TO                    | ZZZ           |            |             |
| 28 | A        | <b>₹</b>   |                       |               |            |             |
|    |          | La         | VP, AP, NP, HP        | <b>€ A</b> OZ | AO         | Adj. Master |
| 29 | PHER     | mer }      |                       | 12            | A0         | Adj. Master |
| 30 | KAFB     | Сал        | NP, AP, VP, AS,NS     | L L&          | <b>A</b> 0 | Adj. Master |
| 31 | PUB      | public J   | AO, N1                | AN, N1        | AO         | Adj. Master |
| 32 | FPLT     |            | PÓ                    | PO            | PO         | End Sent.   |
| i  |          |            |                       |               |            |             |

# The Recognition of Word Boundaries Sample Analysis Fig. 4

(98026)

#### THE PREDICTIVE SYNTACTIC ANALYSIS

The method of predictive syntactic analysis originating at the National Bureau of Standards,<sup>10</sup> and modified at Harvard University,<sup>11,12</sup> is based on the notion that, in terms of the human communications system, sentence analysis cannot be a complicated multi-layered combinatorial problem in which the function of a given word is made to depend upon the characteristics of all other words in the sentence. Rather, it is noted that speech emission and reception appear to be quasilinear, one-dimensional processes when viewed as a function of time, and that as a result it must be possible to analyze a sentence in a reasonably linear fashion.

This premise is supported by certain statistical studies which indicate a large degree of regularity in sentence formation,<sup>13</sup> by psychological experiments undertaken to test the memory span of human beings,<sup>14</sup> and by research toward a new model for language structure and sentence production<sup>15</sup>.

The method of predictive analysis consists in scanning through a sentence from left to right, one word at a time, while making *predictions* at every point about syntactic structures to be found further to the right. Each word in the sentence is tested to find what previously made prediction it fulfills; this information is used, in turn, to set up further predictions for later structures in the same sentence.

The programme actually used attempts to match the syntactic indicators of each correspondent with the predictions stored in a *prediction pool*. At the start of the sentence, a set of initial predictions including "subject", "predicate", and "end of sentence" is entered into the prediction pool. The first match between one of the indicators and a prediction, in the pool is called a *success*. The corresponding word and its indicator, known as the selected correspondent and selected indicator, respectively, are transferred onto a *success output tape* and the prediction pool is updated by eliminating the selected indicator and adding further predictions. Other correspondents which also match one of the predictions are removed to a storage pool known as *hindsight*.

If no match occurs for a given set of correspondents between grammatical indicators and predictions, a success is forced by accepting the indicator corresponding to the first prediction and the first correspondent as the selected items. When a success if forced, an error index known as the *chain number* is incremented to provide at least a partial indication of the accuracy of the analysis. Different types of predictions are identified by a *prediction span indicator* which is used in part to control the updating of the prediction pool.

A simplified flowchart for the predictive analysis is shown in *fig.5*. In actual practice, the indicators of each correspondent of a given shorthand stroke are tested separately against each of the predictions

(98026)



Simplified Flowchart for Predictive Analysis

Fig. 5

(98026)

in the pool. If no match occurs, a success is forced; the chain number is then increased if the selected word is not provided with an infix marker. Words which were previously recognized as particles can thus accept any indicator without penalty.

When the last word in a sentence has been treated, the prediction pool is wiped and essential predictions, identified by an 01 span indicator, are written on the hindsight tape. If no essential predictions are left in the pool at the end of a sentence, and if the chain number is small, indicating that the predictions were generally fulfilled, the analysis is assumed correct. Otherwise, it is possible to refine the analysis by reprocessing a sentence several times, using information originally stored in the hindsight. Span indicators and chain numbers are thus useful not only for error detection but also for error correction in some cases.

The various types of prediction span indicators are listed in *Table 4*. The principal grammatical functions performed by the words in a sentence are shown in *Table 5* together with the grammatical indicators which can *fulfil* each particular function. The functions *predicted* by the grammatical indicators are similarly shown in *Table 6*. For example, a correspondent provided with a noun (N) indicator is acceptable as a noun-adjective complement (*Table 5*) and will in turn predict the occurrence of another nounadjective complement or of a preposition function (*Table 6*).

| TABLE | 4. |  |
|-------|----|--|
|       |    |  |

| PREDICTION | SPAN | INDICATORS |
|------------|------|------------|
|            |      |            |

| Prediction Span Indicator                                                   | Code | Special Action<br>during Analysis               |
|-----------------------------------------------------------------------------|------|-------------------------------------------------|
| Prediction must be fulfilled<br>by next word or not at all                  | 00   | Erase prediction after one word                 |
| Prediction must be fulfilled                                                | 01   | Put prediction in hindsight if not fulfilled    |
| Prediction may be fulfilled several times                                   | 02   | Do not erase: prediction<br>if fulfilled        |
| Prediction should be ful-<br>filled some time before the<br>end of sentence | 03   | Erase only when fulfilled<br>or during end wipe |

(98026)

|           |           | TABLE 5     |             |            |
|-----------|-----------|-------------|-------------|------------|
| SYNTACTIC | FUNCTIONS | FULFILLEDBY | GRAMMATICAL | INDICATORS |

| Grammatical Functions     | Function<br>Codes | Fulfilling Indicators          |
|---------------------------|-------------------|--------------------------------|
| Subject of Vert           | SUBJCT            | A0, T0, N1, N2, P1, P2, R1, B0 |
| Master                    | ADJ MAS           | N1, N2, N3, A0, B0             |
| Object of Verb            | OBJT V            | A0, T0, N1, N2, N3, P2, P3, B0 |
| Predicate Head            | PRED H            | V1, V2, V3, V4                 |
| Noun-Adjective Complement | NADJ CM           | N1, N2, N3, B0, A0, R1         |
| Verb Complement           | VERB CM           | R1, B0, V1, V4                 |
| Adverb Master             | ADV MAS           | A0, B0, V1, V2, V3, V4, H0     |
| Preposition Complement    | PREP C            | A0, T0, N1, N2, N3, P2, P3, B0 |
| Adverb Function           | ADV E             | H0                             |
| Preposition Function      | PREP E            | R0                             |
| Subclause Subject         | SCL SB            | T0, A0, N1, N2, P1, P3, B0     |
| Infinity                  | INFINT            | R0, H0, C0, C1                 |
| Infinitive Base           | INF BS            | V1, V4                         |
| End of Sentence           | END SEN           | P0                             |

(98026)

| Grammatical Indicators | Grammatical Functions Predicted                                                                              |
|------------------------|--------------------------------------------------------------------------------------------------------------|
| A (adjectives)         | Master<br>Noun Adjective Complement<br>Adverb Function<br>Preposition Function                               |
| B (participles)        | Noun Adjective Complement<br>Verb Complement<br>Adverb Function<br>Preposition Function<br>Subclause Subject |
| C (conjunctions)       | Subject of Verb<br>Predicate Head<br>Subclause Subject<br>Infinity                                           |
| H (adverbs)            | Adverb Master                                                                                                |
| N (nouns)              | Noun Adjective Complement<br>Preposition Function                                                            |
| P (pronouns)           | Noun Adjective Complement<br>Preposition Function<br>Subclause Subject                                       |
| R (prepositions)       | Preposition Complement<br>Adverb Function<br>Infinitive Base                                                 |
| T (articles)           | Master                                                                                                       |
| V (verbs)              | Object of Verb<br>Verb Complement<br>Adverb Function                                                         |

TABLE 6 SYNTACTIC FUNCTIONS PREDICTED BY GRAMMATICAL INDICATORS

(98026)

A sample sentence is analyzed in *fig.* 4. Selected indicators and selected grammatical functions are shown in columns 5 and 6, respectively, of *fig.* 4. It will be noted that a single correspondent is chosen for each shorthand stroke; each correspondent is assigned a unique grammatical function, and word parts which must be assembled into complete words are assigned the same grammatical indicator. The correspondent "a", for example is properly recognized as an article, subject of the sentence, in stroke 5, whereas in stroke 28 it is recognized as an adjective which forms a part of the word "a-mer-can".

The success and hindsight outputs actually produced on the Univac computer for the sentence previously considered in *fig.4* are shown in *figs. 6* and 7 respectively. Word boundary indications are included in column 3 of *fig. 6*, showing for example that en-tir-ly, flu-res-ent, lam-p, in-tro-duce-d, etc., are to be attached to form complete words. The final chain number of 03 shows that a success was forced three times. The correct correspondent was chosen in each case, all word boundaries were properly recognized and, except for some minor imperfections in the assignment of grammatical functions, the sample sentence was analyzed correctly.

The updating of the prediction pool is illustrated in *fig. 8*. The pool is operated as a push-down store in such a way that the last prediction entered into the pool is the first one tested for fulfillment. This procedure simplifies the computer programme, economizes storage space, and follows the intuitive notion that the predictions made by the last word analyzed are the ones most likely to be fulfilled by the word which follows. At each step, the selected prediction and all predictions with a 00 span indicator are erased, and new predictions are added to the top of the pool.

A sentence similar to the one analyzed in *figs. 4, 6 and 7* is shown in *fig. 9* before syntactic analysis, including all the multiple correspondents, and excluding any information about the word boundaries. One correspondent must be chosen from each set of multiple correspondents shown in the figure. A comparison of *figs. 6 and 9* shows the improvement obtained.

### CONCLUSION

The contextual and syntactic analyses described were used successfully on several samples of shorthand text. Word boundaries were properly recognized and correspondents correctly assigned for over ninety percent of the shorthand strokes. Almost identical programmes would seem to promise equal success with a variety of input languages. A dictionary of certain phoneme clusters including both acoustic and linguistic features must be used for speech input, and a dictionary of the principal contractions for Braille. In each case the recognition of the many input clusters which are not included in the dictionary is left to a particle analysis, and the formation of complete well-formed output sentences is handled by a syntactic process similar to the predictive analysis.

(98026)

| ٠                                               |                 |             | •               | •      | •              | ٠      |        |                | ٠              |           |                 | ٠      | •      | •            | •       | •              |                 | •       |         | •       | •       | •           | •      | •       | •       | •       | •          | •      |         | •       |         |           |
|-------------------------------------------------|-----------------|-------------|-----------------|--------|----------------|--------|--------|----------------|----------------|-----------|-----------------|--------|--------|--------------|---------|----------------|-----------------|---------|---------|---------|---------|-------------|--------|---------|---------|---------|------------|--------|---------|---------|---------|-----------|
| SERVAL OF<br>MEDICTON<br>STROKE                 |                 | <b>40</b> 0 | 494             | 505    | <del>502</del> | 294    | 562    | 562            | 00 U           | 200       | 101             | 202    | 305    | NO.          | 500     | 306            | 107             | \$07    | 101     | LO.     | 40 K    | <b>د</b> ور | 70r    |         | 114     |         | alt        | 916    | 016     | 510     | 510     | 12r       |
| PREDICTION<br>SPAN<br>NDICATOR                  |                 | 02          | 10              | 10     | υ<br>Ο         | J.S    | L J    | 10             | 55<br>25       | ço        | 6,              | υÜ     | 61     | \$3          | 02      | ¢ Ü            | 01              | 60      | 61      | 50      | 53      | 63          | 10     | ¥ a     | •0      | ţ0      | 10         | 10     | 10      | 61      | 61      | 5         |
| CHARM NUMBER                                    |                 | ę           | e               | 5      | Ę              | 61     | ะ      | 5              | ĩ              | 13        | 5               | ដ      | ž      | <b>7</b> 3   | 27      | 53             | ž               | z       | 25      | \$      | S       | 5           | 6      | 63      | 63      | S       | ŝ          | 53     | 69      | Ş       | s       | 2         |
| ASSNAMED<br>INDICATOR                           |                 | ç           | Ĩ               | 76     | ç              | ç      | ų,     | ¢,             | 5              | 04        | î               | ¢ B    | 04     | ž n          | ទ       | 10             | 9               | Ŷ       | ę       | L2      | 27      | ĉ           | 74     | 96      | 04      | ç       | <b>U</b> 2 | RO-TO  | 4       | U¥      | 99      |           |
| ASSIGNED                                        |                 | THE LET     | , 93 <b>1</b> 4 | SUBJCT | - 8AU          | ACVO E | AOVB E | 844 PQ4        | 14F ENT        | SUBJET    | 544 Pu <b>t</b> | 2 4J43 | paca c | 504 PQ4      | INFINT  | 5 <b>43</b> 64 | 403 MAC         | 204 P45 | ADJ 545 | 241 145 | 544 UUT | INFINT      | H 0344 | VERB CH | VFRB CH | VFRO CH | WERB CH    | J dīes | SAM LAA | 574 ruf | 10. MA  | APJ NIK   |
| ASSEMBLY ASSIGNED<br>MCHOALOR FUNCTION          |                 | ¥           | 1 VF            |        | ,              | IVF    |        | *              |                |           | 145             |        | -      | 1464         | 371     |                | IV <sup>E</sup> |         | -       | 111     | JVF     | •           | *      | •       | 1VF     |         | *          |        |         | ,       | *       | •         |
| TEXT<br>SERIAL<br>NUMBER                        | 1291            | 1292        | 1293            | 1245   | 1296           | 1297   | 1298   | 1299           | 1300           | l Na I    | 1302            | 5051   | 1304   | 1 305        | 1306    | 1307           | 130a            | 1309    | 0161    | 1161    | 1312    | 1313        | -121   | 1315    | 1716    | 111     | 910        | 6121   | 04.1    | 1351    | 1322    | 1334      |
| PARTICLE TEXT<br>ATTACH SERIAL<br>MARVER NUMBER | ANNUL           |             |                 |        | •              | •      | -      |                |                |           |                 |        |        |              |         |                | •               | •       | -       | •       | -       |             |        | •       | •       | •       | -          |        | ۱       | •       | -       |           |
| ASSACHED<br>CORRESPONDENT.                      | ANHUO           | NI.         | 1930            | •      | Ng             | T JA   | Ľ      | 4E #           | 2440           | DIFFERENT | ,<br>TIF        | 96     | L,     | \$0H5        |         | THE            | ערה             | 43a     | FNT     | 1.44    | •       |             | e A S  | 15      | 180     | nu¢F    | د          | 70 THE | ٩       | 454     | CAN     | 00117     |
| MACHINE<br>SHORTHAND<br>MPUT                    | ANDTYFE HEAD ER | 17H         | 8291            | 4      | 6 P B          | t PUR  | пзин   | 1 <b>rm</b> () | ۲.1.4<br>۲.1.4 | TrÊUP     | TFUP            | ų      | r#£U1  | 50 <b>43</b> | 4 n G\$ | -              | TPMRU           | N:S     | EPBT    | ۲атын   | 1       | KĢGS        | **5    | EUPR    | rro     | TKUS    | c          | ter    | 4       | P1-E0   | K 4 P P | 4 10<br>4 |

\_ . \_

Success Output Fig. 6 720

(98026)

| •                                       |                |                    | •      |                |             | ٠               |            |              | •       |                 |            | •               |                         |            | •                |                  |               | ٠               | •        | •              | •          |                  |          | ٠        |             |          | •         | •       |          | •                  |
|-----------------------------------------|----------------|--------------------|--------|----------------|-------------|-----------------|------------|--------------|---------|-----------------|------------|-----------------|-------------------------|------------|------------------|------------------|---------------|-----------------|----------|----------------|------------|------------------|----------|----------|-------------|----------|-----------|---------|----------|--------------------|
| PREDICTOR<br>STROKE                     | roc            | 101                | ÷0÷    | 000            | 101         | 505             | ***        | 2 <b>4</b> 6 | 101     | -00             | uo-        | ,00<br>10       | 460                     | 296        | <b>10</b> 1      | 10J              | 204           | uov             | -00      | <b>6</b> 01    | 296        | -CD              | 9Û,      | *68      | <b>*0</b> * | 296      | 29¢       | 00J     | 70r      | 100                |
| MENCTION<br>SPAN<br>NDICATOR            | 02             | •0                 | 61     | 62             | 60          | 50<br>50        | 50         | 50<br>2      | C.2     | <b>69</b>       | <b>6</b> 0 | <b>6</b> \$     | 60                      | c3         | <b>6</b> 0       | 63               | 5             | 63              | 50       | ¢3             | .0         | C.>              | ¥0       | 40       | υ¢          | •0       | •0        | 10      | 5        | 63                 |
| CHANN<br>NUMBER                         | 2              | 2                  | ε      | £              | ٥           | z               | ĩ          | ĩ            | ະ       | 10              | ē          | e               | 61                      | 10         | ē                | ε                | 5             | 02              | 62       | 22             | 2          | 50               | 5        | 63       | 23          | 2        | <b>C2</b> | 23<br>V | 5        | 25                 |
| ASSIGNED<br>NDICATON                    | ī              | ų.                 | 5      | ĩ              | ç 1         | Ŧ               | 0 <b>4</b> | ÷            | Ŷ       | ų.              | 5          | ç               | ĩ                       | 40         | 12               | 7                | ۹,            | ;               | ß        | Ŧ              | ¢ <b>Ŧ</b> | ĩ                | 42       | 72<br>7  | 4¥          | 42<br>V2 | 42<br>4   | 73      | 42       | ī                  |
| ASSIGNED                                | SUBJET         | þ≇EP r             | 5UBUCT | 4401 FW        | THE BAT     | Sett Put        | SVA AUT    | 500 AU       | LWF INT | ACV XAS         | 1 METAT    | 21-1 L-14       | SUBJOY                  | 58× A.V    | SUJUCT           | ¥V4 [U <b>4</b>  | Sen Yuk       | ₩ 03 <b>6</b> 4 | I WF INT | 40 70en        | APV RAS    | r alla           | ¥4%  'u¥ | 40 T 044 | 41 DOV*     | 844 M44  | ¥44 AU¥   | 4 03•4  | 4 U384   | NUN NUN            |
| ASSEMBLY ASSIGNED<br>INDICATOR FUNCTION | ant            | 1vP                | *      | ۲.             | •           |                 |            | •            | •       | 1ve             | *          | 1               |                         |            | IVF              |                  |               |                 |          | 14k            |            |                  | IVEA     | 1464     | tve.        | LVEA     | įve,      | JVEA    | 14EA     | 146                |
| TEXT<br>Serial<br>Number                | 1292           | 1245               | 1245   | 1295           | 1296        | 1296            | 1299       | 1299         | 1295    | 1295            | 1300       | 1 300           | 1361                    | 1061       | 1051             | 1,542            | 1303          | 1345            | 1305     | 1303           | I Tra      | 1021             | 1 305    | 1505     | 1305        | 1705     | 1305      | 13051   | 1305     | 1365               |
| ASSIGNED<br>CORRESPONDENT               | COMMFS X=LIT N | COARF\$ X=LIT 1934 | 46     | COMMES X-LIT A | ž.          | CORAFS X-LIT FW | * LI Z     | *L*          | L},     | CORRES A-LIT 4U |            | CORKES X+LIT AN | njørtke <sup>n</sup> te | htfreetert | CORRES X-LIT nJF | COPARS X-LIT 1]P | 57 <b>t</b> H | レンザゴ            | 0F       | CORRES X=LIT F | C13        | CORAMS X-LIT LIT | 2.424    | 401 5    | 20F c       | - 50 F   | 3 ټېر د   | - 105   | 20 H - H | CORRECT A-LIT SORE |
| MACHINE<br>SHORTHAND<br>MPUT            | Hul            | ŬCo I              | *      |                | <b>9</b> 17 | Ş y             | (H-1       | 1            | 1       | 1°HU            | 8-V        | 82,4            | T* EUF                  | TV EUF     | T*EUF            | Teur             |               | 4               |          | 14             | re€U1      | n^ EUT           | -^RS     | 5.RS     | 5.45        | 2445     | SrRS      | ちうれに    | 5-AS     | 1000               |

Hindsight Output Fig. 7 721

(98026)



Updating of Prediction Pool Fig. 8

(98026)

| • • • • • •                                                                                 |                                                                                             |                                                                                                                | a a a                                                                                  |
|---------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|
| 2<br>2<br>2<br>2                                                                            |                                                                                             | 1월 - 11월<br>11월 - 11월<br>25 - 53<br>25<br>25<br>25<br>25<br>25<br>25<br>25<br>25<br>25<br>25<br>25<br>25<br>25 | ł                                                                                      |
| -<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>- |                                                                                             | 100 H                                                                                                          | 14 Penetadi<br>6 L.A.S<br>6 L.A.S<br>6 L.A.S                                           |
|                                                                                             | •<br>•<br>•<br>•<br>•<br>•<br>•<br>•<br>•<br>•<br>•<br>•<br>•<br>•<br>•<br>•<br>•<br>•<br>• |                                                                                                                | BALLUT<br>BALLUT<br>BALTH<br>BALTH<br>BALTH<br>BARTHA                                  |
| 244                                                                                         | nem 14                                                                                      | a 4 <sup>2</sup>                                                                                               | 10<br>40<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10 |
| E E                                                                                         |                                                                                             | Ŧ E                                                                                                            | Tues<br>Tues                                                                           |
|                                                                                             |                                                                                             |                                                                                                                |                                                                                        |

Edited Interlinear Translation Before Syntactic Analysis

Fig. 9

(98026)

### REFERENCES

- STEVENS, H. N., "Toward a Model for Speech Recognition", JASA, 1960 32, No. 1.
- FRY, D.B. and DENES, P., "An analogue of the Speech Recognition Process", Symposium on the Mechanization of Thought Processes, National Physical Laboratory, Her Majesty's Stationery Office, London 1959.
- 3. PETERSON, G.E., WANG, W. S-Y., and SIVERTSEN, E., "Segmentation Techniques in Speech Synthesis", JASA, 1958, **30,** No. 8.
- 4. LOCHBAUM, C.C., "Segmentation of Speech in Voiced Sounds, Unvoiced Sounds, and Silence", JASA, 1960, **32**, No. 7.
- 5. PARKER-RHODES, A. F., "An Electronic Computer Program for Translating Chinese into English", MT, 1956, 3, No. 1.
- 6. TAKAHASHI, S., WADA, H., TADENUMA, R., and WATANABE, S., "English Japanese Machine Translation", Information Processing, Butterworths Scientific Publications, London, 1960.
- 7. LAMB S.M., "Segmentation" Proceedings of the National Symposium on Machine Translation, Los Angeles 1960.
- 8. CLEAVE, J.P., "Braille Transcription", MT, 1955. 2, No. 3,
- 9. SALTON, Gerard, "The Automatic Transcription of Machine Shorthand", *Proceedings EJCC*, December 1959.
- RHODES, Ida, "A New Approach to the Mechanical Syntactic Analysis of Russian", National Bureau of Standards, Report No. 6595, November 1959.
- 11. SHERRY, M.E. "Predictive Syntactic Analysis", Proceedings of the National Symposium on Machine Translation, Los Angeles 1960.
- 12. OETTINGER, A.G., "Current Research on Automatic Translation at Harvard University", Proceedings of the National Symposium on Machine Translation, Los Angeles 1960.
- 13. BAXENDALE, P., "A Statistical Analysis of the Pattern Structure of the English Sentence", IBM Research Memorandum RR-MR-27, San Jose Research Laboratories, September 1958.
- 14. MILLER, G.A., "Human Memory and the Storage of Information", IRE Transactions on Information Theory, 1956 TT-2, No. 3.
- 15. YNGVE, V.H., "A Model and an Hypothesis for language Structure", Proc. Amer. Phil. Soc. 1960, 104, No.5.

(98026)