Yujia Zhou


2025

pdf bib
CalibraEval: Calibrating Prediction Distribution to Mitigate Selection Bias in LLMs-as-Judges
Haitao Li | Junjie Chen | Qingyao Ai | Zhumin Chu | Yujia Zhou | Qian Dong | Yiqun Liu
Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

The use of large language models (LLMs) as automated evaluation tools to assess the quality of generated natural language, known as ”LLMs-as-Judges”, has demonstrated promising capabilities and is rapidly gaining widespread attention. However, when applied to pairwise comparisons of candidate responses, LLM-based evaluators often exhibit selection bias. Specifically, their judgments may become inconsistent when the option positions or ID tokens are swapped, compromising the effectiveness and fairness of the evaluation result. To address this challenge, we introduce CalibraEval, a novel label-free method for mitigating selection bias during inference. Specifically, CalibraEval reformulates debiasing as an optimization task aimed at adjusting observed prediction distributions to align with unbiased prediction distributions. To solve this optimization problem, we propose a non-parametric order-preserving algorithm (NOA). This algorithm leverages the partial order relationships between model prediction distributions, thereby eliminating the need for explicit labels and precise mathematical function modeling. Empirical evaluations of LLMs in multiple representative benchmarks demonstrate that CalibraEval effectively mitigates selection bias and improves performance compared to existing debiasing methods. This work marks a step toward building more robust and unbiased automated evaluation frameworks, paving the way for improved reliability in AI-driven assessments. The code can be found at https://github.com/CSHaitao/CalibraEval.

pdf bib
RetroLLM: Empowering Large Language Models to Retrieve Fine-grained Evidence within Generation
Xiaoxi Li | Jiajie Jin | Yujia Zhou | Yongkang Wu | Zhonghua Li | Ye Qi | Zhicheng Dou
Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Large language models (LLMs) exhibit remarkable generative capabilities but often suffer from hallucinations. Retrieval-augmented generation (RAG) offers an effective solution by incorporating external knowledge, but existing methods still face several limitations: additional deployment costs of separate retrievers, redundant input tokens from retrieved text chunks, and the lack of joint optimization of retrieval and generation. To address these issues, we propose RetroLLM, a unified framework that integrates retrieval and generation into a single, auto-regressive process, enabling LLMs to directly generate fine-grained evidence from the corpus with constrained decoding. Moreover, to mitigate false pruning in the process of constrained evidence generation, we introduce (1) hierarchical FM-Index constraints, which generate corpus-constrained clues to identify a subset of relevant documents before evidence generation, reducing irrelevant decoding space; and (2) a forward-looking constrained decoding strategy, which considers the relevance of future sequences to improve evidence accuracy. Extensive experiments on five open-domain QA datasets demonstrate RetroLLM’s superior performance across both in-domain and out-of-domain tasks. The code is available at https://anonymous.4open.science/r/RetroLLM-D95A.

pdf bib
How Credible Is an Answer From Retrieval-Augmented LLMs? Investigation and Evaluation With Multi-Hop QA
Yujia Zhou | Zheng Liu | Zhicheng Dou
Proceedings of the 31st International Conference on Computational Linguistics

Retrieval-augmented Large Language Models (RaLLMs) are reshaping knowledge acquisition, offering long-form, knowledge-grounded answers through advanced reasoning and generation capabilities. Despite the emergence of impactful systems like WebGPT and New Bing, the reliability of RaLLMs, especially in complex situations, is under scrutiny. Our study tackles this concern by evaluating RaLLMs’ question-answering performance using a novel benchmark focusing on Correctness and Groundedness. Correctness measures the logical soundness of the responses, and Groundedness checks for support by relevant references. We introduce an automated model-based evaluation pipeline for multi-hop question-answering tasks, revealing RaLLMs’ proneness to generating inaccuracies when dealing with flawed or partial knowledge. To improve accuracy, we introduce two reasoning strategies, Self-Reflection’ and Self-Completion,’ enabling RaLLMs to identify and fill knowledge gaps, significantly improving answer quality without extensive model retraining.

pdf bib
Decoupling Reasoning and Knowledge Injection for In-Context Knowledge Editing
Changyue Wang | Weihang Su | Qingyao Ai | Yujia Zhou | Yiqun Liu
Findings of the Association for Computational Linguistics: ACL 2025

Knowledge editing enables efficient updates to Large Language Models (LLMs) by modifying specific knowledge without full-model retraining. Among knowledge editing approaches, in-context editing (ICE) stands out for its ability to inject knowledge without modifying the model’s parameters. However, existing ICE approaches directly edit model context without isolating target knowledge from the reasoning path of model inference, resulting in unreliable and low-quality outputs, particularly in multi-hop tasks. To investigate this issue, we analyze the interaction between reasoning path planning and knowledge injection, showing that the reasoning ability of a LLM is usually coupled with its original knowledge, and directly replacing old knowledge with new one could simultaneously hurt the LLM’s performance in task reasoning. Based on these findings, we propose DecKER, a novel ICE framework that separates model reasoning from knowledge editing. Extensive experiments show that DecKER significantly improves multi-hop reasoning performance by mitigating knowledge conflicts and preserving reasoning integrity.

2024

pdf bib
Grounding Language Model with Chunking-Free In-Context Retrieval
Hongjin Qian | Zheng Liu | Kelong Mao | Yujia Zhou | Zhicheng Dou
Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

This paper presents a novel Chunking-Free In-Context (CFIC) retrieval approach, specifically tailored for Retrieval-Augmented Generation (RAG) systems. Traditional RAG systems often struggle with grounding responses using precise evidence text due to the challenges of processing lengthy documents and filtering out irrelevant content. Commonly employed solutions, such as document chunking and adapting language models to handle longer contexts, have their limitations. These methods either disrupt the semantic coherence of the text or fail to effectively address the issues of noise and inaccuracy in evidence retrieval.The CFIC approach addresses these challenges by circumventing the conventional chunking process. It utilizes the encoded hidden states of documents for in-context retrieval, employing auto-aggressive decoding to accurately identify the specific evidence text required for user queries, eliminating the need for chunking. CFIC is further enhanced by incorporating two innovative decoding strategies, namely Constrained Sentence Prefix Decoding and Skip Decoding. These strategies not only improve the efficiency of the retrieval process but also ensure that the fidelity of the generated grounding text evidence is maintained.Our evaluations of CFIC on a range of open question answering datasets demonstrate its superiority in retrieving relevant and accurate information, offering a significant improvement over traditional methods. By doing away with the need for document chunking, CFIC presents a more streamlined, effective, and efficient retrieval solution, making it a valuable advancement in the field of RAG systems.

pdf bib
BIDER: Bridging Knowledge Inconsistency for Efficient Retrieval-Augmented LLMs via Key Supporting Evidence
Jiajie Jin | Yutao Zhu | Yujia Zhou | Zhicheng Dou
Findings of the Association for Computational Linguistics: ACL 2024

Retrieval-augmented large language models (LLMs) have demonstrated efficacy in knowledge-intensive tasks such as open-domain QA, addressing inherent challenges in knowledge update and factual inadequacy.However, inconsistencies between retrieval knowledge and the necessary knowledge for LLMs, leading to a decline in LLM’s answer quality. This paper introduces BIDER, an approach that refines retrieval documents into Key Supporting Evidence (KSE) through knowledge synthesis, supervised fine-tuning (SFT), and preference alignment. We train BIDER by learning from crafting KSE, while maximizing its output to align with LLM’s information acquisition preferences through reinforcement learning. Evaluations across five datasets show BIDER boosts LLMs’ answer quality by 7% while reducing input content length in retrieval documents by 80%, outperforming existing methods. The proposed KSE simulation effectively equips LLMs with essential information for accurate question answering.

pdf bib
An Element is Worth a Thousand Words: Enhancing Legal Case Retrieval by Incorporating Legal Elements
Chenlong Deng | Zhicheng Dou | Yujia Zhou | Peitian Zhang | Kelong Mao
Findings of the Association for Computational Linguistics: ACL 2024

Legal case retrieval plays an important role in promoting judicial justice and fairness. One of its greatest challenges is that the definition of relevance goes far beyond the common semantic relevance as in ad-hoc retrieval. In this paper, we reveal that the legal elements, which typically comprise key facts in a specialized legal context, can largely improve the relevance matching of legal case retrieval. To facilitate the use of legal elements, we construct a Chinese legal element dataset called LeCaRD-Elem based on the widely-used LeCaRD dataset, through a two-stage semi-automatic method with a minimized reliance on human labor. Meanwhile, we introduce two new models to enhance legal search using legal elements. The first, Elem4LCR-E, is a two-stage model that explicitly predicts legal elements from texts and then leverages them for improved ranking. Recognizing the potential benefits of more seamless integration, we further propose an end-to-end model called Elem4LCR-I, which internalizes the legal element knowledge into its model parameters using a tailored teacher-student training framework. Extensive experiments underscore the significant value of legal elements and demonstrate the superiority of our two proposed models in enhancing legal search over existing methods.

pdf bib
Unsupervised Real-Time Hallucination Detection based on the Internal States of Large Language Models
Weihang Su | Changyue Wang | Qingyao Ai | Yiran Hu | Zhijing Wu | Yujia Zhou | Yiqun Liu
Findings of the Association for Computational Linguistics: ACL 2024

Hallucinations in large language models (LLMs) refer to the phenomenon of LLMs producing responses that are coherent yet factually inaccurate. This issue undermines the effectiveness of LLMs in practical applications, necessitating research into detecting and mitigating hallucinations of LLMs. Previous studies have mainly concentrated on post-processing techniques for hallucination detection, which tend to be computationally intensive and limited in effectiveness due to their separation from the LLM’s inference process. To overcome these limitations, we introduce MIND, an unsupervised training framework that leverages the internal states of LLMs for real-time hallucination detection without requiring manual annotations. Additionally, we present HELM, a new benchmark for evaluating hallucination detection across multiple LLMs, featuring diverse LLM outputs and the internal states of LLMs during their inference process. Our experiments demonstrate that MIND outperforms existing state-of-the-art methods in hallucination detection.

2023

pdf bib
Enhancing Generative Retrieval with Reinforcement Learning from Relevance Feedback
Yujia Zhou | Zhicheng Dou | Ji-Rong Wen
Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing

The recent advent of end-to-end generative retrieval marks a significant shift in document retrieval methods, leveraging differentiable search indexes to directly produce relevant document identifiers (docids) in response to a specific query. Nevertheless, this approach faces two fundamental challenges: (i) a discrepancy between the token-level probabilistic optimization and the broader document-level relevance estimation; (ii) an overemphasis on top-1 results at the expense of overall ranking quality. To tackle these challenges, we propose a generative retrieval model with reinforcement learning from relevance feedback, which aims to align token-level docid generation with document-level relevance estimation. The training process incorporates three stages: supervised fine-tuning, relevance reward model training, and reinforced learning-to-rank from relevance feedback. To train a high-quality reward model, we define “relevance” under three progressive scenarios, which collectively offer a comprehensive evaluation of the document relevance. Experiments conducted on two benchmark datasets demonstrate the effectiveness of our proposed approach.