This is an internal, incomplete preview of a proposed change to the ACL Anthology.
For efficiency reasons, we don't generate MODS or Endnote formats, and the preview may be incomplete in other ways, or contain mistakes.
Do not treat this content as an official publication.
Large Language Models (LLMs) have shown impressive progress in mathematical reasoning. While data augmentation is promising to enhance mathematical problem-solving ability, current approaches are predominantly limited to instance-level modifications—such as rephrasing or generating syntactic variations—which fail to capture and leverage the intrinsic relational structures inherent in mathematical knowledge. Inspired by human learning processes, where mathematical proficiency develops through systematic exposure to interconnected concepts, we introduce MathFusion, a novel framework that enhances mathematical reasoning through cross-problem instruction synthesis. MathFusion implements this through three fusion strategies: (1) sequential fusion, which chains related problems to model solution dependencies; (2) parallel fusion, which combines analogous problems to reinforce conceptual understanding; and (3) conditional fusion, which creates context-aware selective problems to enhance reasoning flexibility. By applying these strategies, we generate a new dataset, MathFusionQA, followed by fine-tuning models (DeepSeekMath-7B, Mistral-7B, Llama3-8B) on it. Experimental results demonstrate that MathFusion achieves substantial improvements in mathematical reasoning while maintaining high data efficiency, boosting performance by 18.0 points in accuracy across diverse benchmarks while requiring only 45K additional synthetic instructions, representing a substantial improvement over traditional single-instruction approaches.
The attention mechanism is a fundamental component of the Transformer model, contributing to interactions among distinct tokens. In general, the attention scores are determined simply by the key-query products. However, this work’s occasional trial (combining DAPE and NoPE) of including additional MLPs on attention scores without position encoding indicates that the classical key-query multiplication may limit the performance of Transformers. In this work, we conceptualize attention as a feature map and apply the convolution operator (for neighboring attention scores across different heads) to mimic the processing methods in computer vision. Specifically, **the main contribution of this paper is identifying and interpreting the Transformer length extrapolation problem as a result of the limited expressiveness of the naive query and key dot product, and we successfully translate the length extrapolation issue into a well-understood feature map processing problem**, which is called Convolutional Data-Adaptive Position Encoding (CDAPE).The novel insight, which can be adapted to various attention-related models, reveals that the current Transformer architecture has the potential for further evolution. Extensive experiments demonstrate that treating attention as a feature map and applying convolution as a processing method significantly enhances Transformer performance.
While data synthesis and distillation are promising strategies to enhance small language models, current approaches heavily rely on Large Language Models (LLMs), which suffer from high computational costs, environmental inefficiency, and potential biases inherited from monolithic architectures. In contrast, smaller LMs are more accessible and sustainable, but their individual capabilities often fall short in generating high-quality, diverse, and reliable data. Inspired by collaborative human processes (e.g., peer review), we propose a multiple small LMs involved framework, GRA, that aggregates specialized roles across small LMs to iterative refinement and quality control typically achieved by a single large LM. In this collaborative framework, multiple small LMs assume distinct roles—Generator, Reviewer, and Adjudicator—to simulate a peer-review-inspired data synthesis pipeline. The Generator proposes initial data samples, the Reviewer critiques their quality and diversity, and the Adjudicator resolves conflicts to finalize the output. By decomposing the synthesis process into specialized sub-tasks, collaborative small LMs can achieve data-level parity with distillation from large LMs. Through experiments across multiple benchmarks, we demonstrate that GRA-produced data matches or exceeds the quality of single large LM outputs, e.g., Qwen-2.5-72B-Instruct. Our results challenge the necessity of monolithic large models for high-quality data synthesis, advocating instead for strategic coordination of smaller agents.
Despite significant progress in safety alignment, large language models (LLMs) remain susceptible to jailbreak attacks. Existing defense mechanisms have not fully deleted harmful knowledge in LLMs, which allows such attacks to bypass safeguards and produce harmful outputs. To address this challenge, we propose a novel safety alignment strategy, Constrained Knowledge Unlearning (CKU), which focuses on two primary objectives: knowledge localization and retention, and unlearning harmful knowledge. CKU works by scoring neurons in specific multilayer perceptron (MLP) layers to identify a subset U of neurons associated with useful knowledge. During the unlearning process, CKU prunes the gradients of neurons in U to preserve valuable knowledge while effectively mitigating harmful content. Experimental results demonstrate that CKU significantly enhances model safety without compromising overall performance, offering a superior balance between safety and utility compared to existing methods. Additionally, our analysis of neuron knowledge sensitivity across various MLP layers provides valuable insights into the mechanics of safety alignment and model knowledge editing.
The proliferation of jailbreak attacks against large language models (LLMs) highlights the need for robust security measures. However, in multi-round dialogues, malicious intentions may be hidden in interactions, leading LLMs to be more prone to produce harmful responses. In this paper, we propose the Multi-Turn Safety Alignment (MTSA) framework, to address the challenge of securing LLMs in multi-round interactions. It consists of two stages: In the thought-guided attack learning stage, the red-team model learns about thought-guided multi-round jailbreak attacks to generate adversarial prompts. In the adversarial iterative optimization stage, the red-team model and the target model continuously improve their respective capabilities in interaction. Furthermore, we introduce a multi-turn reinforcement learning algorithm based on future rewards to enhance the robustness of safety alignment. Experimental results show that the red-team model exhibits state-of-the-art attack capabilities, while the target model significantly improves its performance on safety benchmarks.
The rapid evolution of artificial intelligence in drug discovery encounters challenges with generalization and extensive training, yet Large Language Models (LLMs) offer promise in reshaping interactions with complex molecular data. Our novel contribution, InstructMol, a multi-modal LLM, effectively aligns molecular structures with natural language via an instruction-tuning approach, utilizing a two-stage training strategy that adeptly combines limited domain-specific data with molecular and textual information. InstructMol showcases substantial performance improvements in drug discovery-related molecular tasks, surpassing leading LLMs and significantly reducing the gap with specialists, thereby establishing a robust foundation for a versatile and dependable drug discovery assistant.
The rapid evolution of large language models (LLMs) has transformed the competitive landscape in natural language processing (NLP), particularly for English and other data-rich languages. However, underrepresented languages like Cantonese, spoken by over 85 million people, face significant development gaps, which is particularly concerning given the economic significance of the Guangdong-Hong Kong-Macau Greater Bay Area, and in substantial Cantonese-speaking populations in places like Singapore and North America. Despite its wide use, Cantonese has scant representation in NLP research, especially compared to other languages from similarly developed regions. To bridge these gaps, we outline current Cantonese NLP methods and introduce new benchmarks designed to evaluate LLM performance in factual generation, mathematical logic, complex reasoning, and general knowledge in Cantonese, which aim to advance open-source Cantonese LLM technology. We also propose future research directions and recommended models to enhance Cantonese LLM development.
Generating emotionally appropriate responses in conversations with large language models presents a significant challenge due to the complexities of human emotions and cognitive processes, which remain largely underexplored in their critical role in social interactions. In this study, we introduce a two-stage automatic data generation framework to create CAPE, a Chinese dataset named Cognitive Appraisal theory-based Emotional corpus. This corpus facilitates the generation of dialogues with contextually appropriate emotional responses by accounting for diverse personal and situational factors. We propose two tasks utilizing this dataset: emotion prediction and next utterance prediction. Both automated and human evaluations demonstrate that agents trained on our dataset can deliver responses that are more aligned with human emotional expressions. Our study shows the potential for advancing emotional expression in conversational agents, paving the way for more nuanced and meaningful human-computer interactions.
With the extensive deployment of Large Language Models (LLMs), ensuring their safety has become increasingly critical. However, existing defense methods often struggle with two key issues: (i) inadequate defense capabilities, particularly in domain-specific scenarios like chemistry, where a lack of specialized knowledge can lead to the generation of harmful responses to malicious queries. (ii) over-defensiveness, which compromises the general utility and responsiveness of LLMs. To mitigate these issues, we introduce a multi-agents-based defense framework, Guide for Defense (G4D), which leverages accurate external information to provide an unbiased summary of user intentions and analytically grounded safety response guidance. Extensive experiments on popular jailbreak attacks and benign datasets show that our G4D can enhance LLM’s robustness against jailbreak attacks on general and domain-specific scenarios without compromising the model’s general functionality.
Low-Rank Adaptation (LoRA) has gained popularity for fine-tuning large foundation models, leveraging low-rank matrices \mathbf A and \mathbf B to represent weight changes (i.e., 𝛥 \mathbf W = \mathbf B \mathbf A). This method reduces trainable parameters and mitigates heavy memory consumption associated with full delta matrices by sequentially multiplying \mathbf A and \mathbf B with the activation. Despite its success, the intrinsic low-rank characteristic may limit its performance. Although several variants have been proposed to address this issue, they often overlook the crucial computational and memory efficiency brought by LoRA. In this paper, we propose Circular Convolution Adaptation (C3A), which not only achieves high-rank adaptation with enhanced performance but also excels in both computational power and memory utilization. Extensive experiments demonstrate that C3A consistently outperforms LoRA and its variants across various fine-tuning tasks.
Large Language Models (LLMs) are revolutionizing bioinformatics, enabling advanced analysis of DNA, RNA, proteins, and single-cell data. This survey provides a systematic review of recent advancements, focusing on genomic sequence modeling, RNA structure prediction, protein function inference, and single-cell transcriptomics. Meanwhile, we also discuss several key challenges, including data scarcity, computational complexity, and cross-omics integration, and explore future directions such as multimodal learning, hybrid AI models, and clinical applications. By offering a comprehensive perspective, this paper underscores the transformative potential of LLMs in driving innovations in bioinformatics and precision medicine.
Large language models (LLMs) have demonstrated remarkable capabilities, especially the recent advancements in reasoning, such as o1 and o3, pushing the boundaries of AI. Despite these impressive achievements in mathematics and coding, the reasoning abilities of LLMs in domains requiring cryptographic expertise remain underexplored. In this paper, we introduce CipherBank, a comprehensive benchmark designed to evaluate the reasoning capabilities of LLMs in cryptographic decryption tasks. CipherBank comprises 2,358 meticulously crafted problems, covering 262 unique plaintexts across 5 domains and 14 subdomains, with a focus on privacy-sensitive and real-world scenarios that necessitate encryption. From a cryptographic perspective, CipherBank incorporates 3 major categories of encryption methods, spanning 9 distinct algorithms, ranging from classical ciphers to custom cryptographic techniques. We evaluate state-of-the-art LLMs on CipherBank, e.g., GPT-4o, DeepSeek-V3, and cutting-edge reasoning-focused models such as o1 and DeepSeek-R1. Our results reveal significant gaps in reasoning abilities not only between general-purpose chat LLMs and reasoning-focused LLMs but also in the performance of current reasoning-focused models when applied to classical cryptographic decryption tasks, highlighting the challenges these models face in understanding and manipulating encrypted data. Through detailed analysis and error investigations, we provide several key observations that shed light on the limitations and potential improvement areas for LLMs in cryptographic reasoning.These findings underscore the need for continuous advancements in LLM reasoning capabilities.
Large language models (LLMs) have demonstrated remarkable reasoning capability in solving mathematical problems. However, existing approaches primarily focus on improving the quality of correct training data, e.g., distilling high-quality correct solutions from advanced models, neglecting the value contained in error data, potentially hindering the model’s reflective ability. Though some studies attempted to leverage error data, they often involve complex mechanisms, such as Monte Carlo Tree Search (MCTS) to explore error nodes.In this work, we propose to enhance LLM’s reasoning ability by Learning from Errors for MatheMatical Advancement (LEMMA). LEMMA constructs data consists of an incorrect solution with an erroneous step and a reflection connection to a correct solution for fine-tuning. Specifically, we systematically analyze the model-generated error types and introduce an _error-type grounded mistake augmentation_ method to collect diverse and representative errors. Correct solutions are either from fixing the errors or generating a fresh start. By fine-tuning on the constructed dataset, the model is able to _self-correct errors autonomously_ within the generation process _without relying on external critique models_. Experimental results demonstrate that LEMMA achieves significant performance improvements over other strong models with less than 90k data.
With the widespread adoption of Large Language Models (LLMs), jailbreak attacks have become an increasingly pressing safety concern. While safety-aligned LLMs can effectively defend against normal harmful queries, they remain vulnerable to such attacks. Existing defense methods primarily rely on fine-tuning or input modification, which often suffer from limited generalization and reduced utility. To address this, we introduce DeTAM, a finetuning-free defense approach that improves the defensive capabilities against jailbreak attacks of LLMs via targeted attention modification. Specifically, we analyze the differences in attention scores between successful and unsuccessful defenses to identify the attention heads sensitive to jailbreak attacks. During inference, we reallocate attention to emphasize users’ core intentions, minimizing interference from attack tokens. Our experimental results demonstrate that DeTAM outperforms various baselines in jailbreak defense and exhibits robust generalization across different attacks and models, maintaining its effectiveness even on in-the-wild jailbreak data. Furthermore, we compare DeTAM with the baselines on over-defense datasets, further validating its superior balance between helpfulness and harmlessness.
Large language models (LLMs) excel in problem-solving but require training data with diverse reasoning processes. Existing methods mainly optimize instruction-response pairs but lack a systematic design for the underlying reasoning structure. This paper proposes RSS: a Reasoning Structure driven data Synthesis method. We first proactively develop a hierarchical GFlowNet to construct reasoning structures efficiently through a coarse-to-fine directed acyclic graph (DAG) growth process. Then reasoning DAGs are leveraged to actively guide the instruction generation via an iterative suggester-editor workflow and enhance response quality using a structure-aware strategy. Experiments show that LLMs trained on our synthetic datasets achieve 48.50%, 84.00%, 79.90% for AlpacaEval2, GSM8K and HumanEval, outperforming existing data synthesis methods.
Alignment is a crucial step to enhance the instruction-following and conversational abilities of language models. Despite many recent works proposing new algorithms, datasets, and training pipelines, there is a lack of comprehensive studies measuring the impact of various design choices throughout the whole training process. We first conduct a rigorous analysis over a three-stage training pipeline consisting of supervised fine-tuning, offline preference learning, and online preference learning. We have found that using techniques like sequence packing, loss masking in SFT, increasing the preference dataset size in DPO, and online DPO training can significantly improve the performance of language models. We then train from Gemma-2b-base and LLama-3-8b-base, and find that our best models exceed the performance of the official instruct models tuned with closed-source data and algorithms. Our code and models can be found at https://github.com/Columbia-NLP-Lab/LionAlignment.
Large Language Models (LLMs) have shown great potential in the biomedical domain with the advancement of retrieval-augmented generation (RAG). However, existing retrieval-augmented approaches face challenges in addressing diverse queries and documents, particularly for medical knowledge queries, resulting in sub-optimal performance. To address these limitations, we propose a novel plug-and-play LLM-based retrieval method called Self-Rewarding Tree Search (SeRTS) based on Monte Carlo Tree Search (MCTS) and a self-rewarding paradigm. By combining the reasoning capabilities of LLMs with the effectiveness of tree search, SeRTS boosts the zero-shot performance of retrieving high-quality and informative results for RAG. We further enhance retrieval performance by fine-tuning LLMs with Proximal Policy Optimization (PPO) objectives using the trajectories collected by SeRTS as feedback. Controlled experiments using the BioASQ-QA dataset with GPT-3.5-Turbo and LLama2-7b demonstrate that our method significantly improves the performance of the BM25 retriever and surpasses the strong baseline of self-reflection in both efficiency and scalability. Moreover, SeRTS generates higher-quality feedback for PPO training than self-reflection. Our proposed method effectively adapts LLMs to document retrieval tasks, enhancing their ability to retrieve highly relevant documents for RAG in the context of medical knowledge queries. This work presents a significant step forward in leveraging LLMs for accurate and comprehensive biomedical question answering.
Large language models are playing an increasingly significant role in molecular research, yet existing models often generate erroneous information. Traditional evaluations fail to assess a model’s factual correctness. To rectify this absence, we present MoleculeQA, a novel question answering (QA) dataset which possesses 62K QA pairs over 23K molecules. Each QA pair, composed of a manual question, a positive option and three negative options, has consistent semantics with a molecular description from authoritative corpus. MoleculeQA is not only the first benchmark to evaluate molecular factual correctness but also the largest molecular QA dataset. A comprehensive evaluation on MoleculeQA for existing molecular LLMs exposes their deficiencies in specific aspects and pinpoints crucial factors for molecular modeling. Furthermore, we employ MoleculeQA in reinforcement learning to mitigate model hallucinations, thereby enhancing the factual correctness of generated information.
Self-anthropomorphism in robots manifests itself through their display of human-like characteristics in dialogue, such as expressing preferences and emotions. Our study systematically analyzes self-anthropomorphic expression within various dialogue datasets, outlining the contrasts between self-anthropomorphic and non-self-anthropomorphic responses in dialogue systems. We show significant differences in these two types of responses and propose transitioning from one type to the other. We also introduce Pix2Persona, a novel dataset aimed at developing ethical and engaging AI systems in various embodiments. This dataset preserves the original dialogues from existing corpora and enhances them with paired responses: self-anthropomorphic and non-self-anthropomorphic for each original bot response. Our work not only uncovers a new category of bot responses that were previously under-explored but also lays the groundwork for future studies about dynamically adjusting self-anthropomorphism levels in AI systems to align with ethical standards and user expectations.
Multimodal Large Language Models (MLLMs) have seen growing adoption across various scientific disciplines. These advancements encourage the investigation of molecule-text modeling within synthetic chemistry, a field dedicated to designing and conducting chemical reactions to synthesize new compounds with desired properties and applications. Current approaches, however, often neglect the critical role of multi-molecule graph interaction in understanding chemical reactions, leading to suboptimal performance in synthetic chemistry tasks. This study introduces PRESTO (Progressive Pretraining Enhances Synthetic Chemistry Outcomes), a new framework that bridges the molecule-text modality gap by integrating a comprehensive benchmark of pretraining strategies and dataset configurations. It progressively improves multimodal LLMs through cross-modal alignment and multi-graph understanding. Our extensive experiments demonstrate that PRESTO offers competitive results in downstream synthetic chemistry tasks. The code can be found at https://github.com/IDEA-XL/PRESTO.
Augmenting Large Language Models (LLMs) for Question Answering (QA) with domain specific data has attracted wide attention. However, domain data often exists in a hybrid format, including text and semi-structured tables, posing challenges for the seamless integration of information. Table-to-Text Generation is a promising solution by facilitating the transformation of hybrid data into a uniformly text-formatted corpus. Although this technique has been widely studied by the NLP community, there is currently no comparative analysis on how corpora generated by different table-to-text methods affect the performance of QA systems.In this paper, we address this research gap in two steps. First, we innovatively integrate table-to-text generation into the framework of enhancing LLM-based QA systems with domain hybrid data. Then, we utilize this framework in real-world industrial data to conduct extensive experiments on two types of QA systems (DSFT and RAG frameworks) with four representative methods: Markdown format, Template serialization, TPLM-based method, and LLM-based method. Based on the experimental results, we draw some empirical findings and explore the underlying reasons behind the success of some methods. We hope the findings of this work will provide a valuable reference for the academic and industrial communities in developing robust QA systems.
Chatbots have become popular in educational settings, revolutionizing how students interact with material and how teachers teach. We present Curriculum-Driven EduBot, a framework for developing a chatbot that combines the interactive features of chatbots with the systematic material of English textbooks to assist students in enhancing their conversational skills. We begin by extracting pertinent topics from textbooks and using large language models to generate dialogues related to these topics. We then fine-tune an open-source LLM using our generated conversational data to create our curriculum-driven chatbot. User studies demonstrate that EduBot outperforms ChatGPT in leading curriculum-based dialogues and adapting its dialogue to match the user’s English proficiency level. By combining traditional textbook methodologies with conversational AI, our approach offers learners an interactive tool that aligns with their curriculum and provides user-tailored conversation practice. This facilitates meaningful student-bot dialogues and enriches the overall learning experience within the curriculum’s pedagogical framework.
Dialogue summarization has recently garnered significant attention due to its wide range of applications. However, existing methods for summarizing dialogues have limitations because they do not take into account the inherent structure of dialogue and rely heavily on labeled data, which can lead to poor performance in new domains. In this work, we propose DIONYSUS (dynamic input optimization in pre-training for dialogue summarization), a pre-trained encoder-decoder model for summarizing dialogues in any new domain. To pre-train DIONYSUS, we create two pseudo summaries for each dialogue example: one from a fine-tuned summarization model and the other from important dialogue turns. We then choose one of these pseudo summaries based on information distribution differences in different types of dialogues. This selected pseudo summary serves as the objective for pre-training DIONYSUS using a self-supervised approach on a large dialogue corpus. Our experiments show that DIONYSUS outperforms existing methods on six datasets, as demonstrated by its ROUGE scores in zero-shot and few-shot settings
Recent studies have pointed out that many well-developed Visual Question Answering (VQA) systems suffer from bias problem. Despite the remarkable performance gained on In-Distribution (ID) datasets, the VQA model might merely capture the superficial correlation from question to answer rather than showing real reasoning abilities. Therefore, when switching to Out-of-Distribution (OOD) dataset, whose test distribution is unknown or even reversed with the training set, significant drops might be demonstrated. Although efforts have been devoted to easing the negative bias effect brought by language prior and analysing its inherent cause, they are still limited by the following two aspects. First, most current debiasing methods achieve promising OOD generalization ability with a major sacrifice of the ID performance. Second, existing researches are restricted by exploiting comprehensive biases, since weakening the language bias is mainly focused, while only a few works consider vision bias. In this paper, we investigate a straightforward way to mitigate bias problem for VQA task. Specifically, we reduce bias effect by subtracting bias score from standard VQA base score. Based on such a direct strategy, we design two bias learning branches to detect more bias information, which are combined with a dynamical constraint loss to alleviate the problem of over-correction and insufficient debiasing effect. We evaluate our method on the challenging VQA v2.0 and VQA-CP V2,0 datasets and the proposed method achievessignificant improvement.
Opinion summarization is expected to digest larger review sets and provide summaries from different perspectives. However, most existing solutions are deficient in epitomizing extensive reviews and offering opinion summaries from various angles due to the lack of designs for information selection. To this end, we propose SubSumm, a supervised summarization framework for large-scale multi-perspective opinion summarization. SubSumm consists of a review sampling strategy set and a two-stage training scheme. The sampling strategies take sentiment orientation and contrastive information value into consideration, with which the review subsets from different perspectives and quality levels can be selected. Subsequently, the summarizer is encouraged to learn from the sub-optimal and optimal subsets successively in order to capitalize on the massive input. Experimental results on AmaSum and Rotten Tomatoes datasets demonstrate that SubSumm is adept at generating pros, cons, and verdict summaries from hundreds of input reviews. Furthermore, our in-depth analysis verifies that the advanced selection of review subsets and the two-stage training scheme are vital to boosting the summarization performance.
Dialog systems are often designed or trained to output human-like responses. However, some responses may be impossible for a machine to truthfully say (e.g. “that movie made me cry”). Highly anthropomorphic responses might make users uncomfortable or implicitly deceive them into thinking they are interacting with a human. We collect human ratings on the feasibility of approximately 900 two-turn dialogs sampled from 9 diverse data sources. Ratings are for two hypothetical machine embodiments: a futuristic humanoid robot and a digital assistant. We find that for some data-sources commonly used to train dialog systems, 20-30% of utterances are not viewed as possible for a machine. Rating is marginally affected by machine embodiment. We explore qualitative and quantitative reasons for these ratings. Finally, we build classifiers and explore how modeling configuration might affect output permissibly, and discuss implications for building less falsely anthropomorphic dialog systems.
Text-video retrieval focuses on two aspects: cross-modality interaction and video-language encoding. Currently, the mainstream approach is to train a joint embedding space for multimodal interactions. However, there are structural and semantic differences between text and video, making this approach challenging for fine-grained understanding. In order to solve this, we propose an end-to-end graph-based hierarchical aggregation network for text-video retrieval according to the hierarchy possessed by text and video. We design a token-level weighted network to refine intra-modality representations and construct a graph-based message passing attention network for global-local alignment across modality. We conduct experiments on the public datasets MSR-VTT-9K, MSR-VTT-7K and MSVD, and achieve Recall@1 of 73.0%, 65.6%, and 64.0% , which is 25.7%, 16.5%, and 14.2% better than the current state-of-the-art model.
A key challenge of Conversational Recommendation Systems (CRS) is to integrate the recommendation function and the dialog generation function smoothly. Previous works employ graph neural networks with external knowledge graphs (KG) to model individual recommendation items and integrate KGs with language models through attention mechanism for response generation. Although previous approaches prove effective, there is still room for improvement. For example, KG-based approaches only rely on entity relations and bag-of-words to recommend items and neglect the information in the conversational context. We propose to improve the usage of dialog context for both recommendation and response generation using an encoding architecture along with the self-attention mechanism of transformers. In this paper, we propose a simple yet effective architecture comprising a pre-trained language model (PLM) and an item metadata encoder to integrate the recommendation and the dialog generation better. The proposed item encoder learns to map item metadata to embeddings reflecting the rich information of the item, which can be matched with dialog context. The PLM then consumes the context-aware item embeddings and dialog context to generate high-quality recommendations and responses. Experimental results on the benchmark dataset ReDial show that our model obtains state-of-the-art results on both recommendation and response generation tasks.
We describe a new freely available Chinese multi-party dialogue dataset for automatic extraction of dialogue-based character relationships. The data has been extracted from the original TV scripts of a Chinese sitcom called “I Love My Home” with complex family-based human daily spoken conversations in Chinese. First, we introduced human annotation scheme for both global Character relationship map and character reference relationship. And then we generated the dialogue-based character relationship triples. The corpus annotates relationships between 140 entities in total. We also carried out a data exploration experiment by deploying a BERT-based model to extract character relationships on the CRECIL corpus and another existing relation extraction corpus (DialogRE (CITATION)).The results demonstrate that extracting character relationships is more challenging in CRECIL than in DialogRE.
Knowledge-grounded dialogue systems are challenging to build due to the lack of training data and heterogeneous knowledge sources. Existing systems perform poorly on unseen topics due to limited topics covered in the training data. In addition, it is challenging to generalize to the domains that require different types of knowledge sources. To address the above challenges, we present PLUG, a language model that homogenizes different knowledge sources to a unified knowledge representation for knowledge-grounded dialogue generation tasks. We first retrieve relevant information from heterogeneous knowledge sources (e.g., wiki, dictionary, or knowledge graph); Then the retrieved knowledge is transformed into text and concatenated with dialogue history to feed into the language model for generating responses. PLUG is pre-trained on a large-scale knowledge-grounded dialogue corpus. The empirical evaluation on two benchmarks shows that PLUG generalizes well across different knowledge-grounded dialogue tasks. It achieves comparable performance with state-of-the-art methods in the fully-supervised setting and significantly outperforms other approaches in zero-shot and few-shot settings.
Emotional support is a crucial ability for many conversation scenarios, including social interactions, mental health support, and customer service chats. Following reasonable procedures and using various support skills can help to effectively provide support. However, due to the lack of a well-designed task and corpora of effective emotional support conversations, research on building emotional support into dialog systems remains lacking. In this paper, we define the Emotional Support Conversation (ESC) task and propose an ESC Framework, which is grounded on the Helping Skills Theory. We construct an Emotion Support Conversation dataset (ESConv) with rich annotation (especially support strategy) in a help-seeker and supporter mode. To ensure a corpus of high-quality conversations that provide examples of effective emotional support, we take extensive effort to design training tutorials for supporters and several mechanisms for quality control during data collection. Finally, we evaluate state-of-the-art dialog models with respect to the ability to provide emotional support. Our results show the importance of support strategies in providing effective emotional support and the utility of ESConv in training more emotional support systems.
Humans are increasingly interacting with machines through language, sometimes in contexts where the user may not know they are talking to a machine (like over the phone or a text chatbot). We aim to understand how system designers and researchers might allow their systems to confirm its non-human identity. We collect over 2,500 phrasings related to the intent of “Are you a robot?”. This is paired with over 2,500 adversarially selected utterances where only confirming the system is non-human would be insufficient or disfluent. We compare classifiers to recognize the intent and discuss the precision/recall and model complexity tradeoffs. Such classifiers could be integrated into dialog systems to avoid undesired deception. We then explore how both a generative research model (Blender) as well as two deployed systems (Amazon Alexa, Google Assistant) handle this intent, finding that systems often fail to confirm their non-human identity. Finally, we try to understand what a good response to the intent would be, and conduct a user study to compare the important aspects when responding to this intent.
We present LEGOEval, an open-source toolkit that enables researchers to easily evaluate dialogue systems in a few lines of code using the online crowdsource platform, Amazon Mechanical Turk. Compared to existing toolkits, LEGOEval features a flexible task design by providing a Python API that maps to commonly used React.js interface components. Researchers can personalize their evaluation procedures easily with our built-in pages as if playing with LEGO blocks. Thus, LEGOEval provides a fast, consistent method for reproducing human evaluation results. Besides the flexible task design, LEGOEval also offers an easy API to review collected data.
Existing dialog system models require extensive human annotations and are difficult to generalize to different tasks. The recent success of large pre-trained language models such as BERT and GPT-2 (Devlin et al., 2019; Radford et al., 2019) have suggested the effectiveness of incorporating language priors in down-stream NLP tasks. However, how much pre-trained language models can help dialog response generation is still under exploration. In this paper, we propose a simple, general, and effective framework: Alternating Recurrent Dialog Model (ARDM). ARDM models each speaker separately and takes advantage of the large pre-trained language model. It requires no supervision from human annotations such as belief states or dialog acts to achieve effective conversations. ARDM outperforms or is on par with state-of-the-art methods on two popular task-oriented dialog datasets: CamRest676 and MultiWOZ. Moreover, we can generalize ARDM to more challenging, non-collaborative tasks such as persuasion. In persuasion tasks, ARDM is capable of generating human-like responses to persuade people to donate to a charity.
Linguistically informed analyses of language models (LMs) contribute to the understanding and improvement of such models. Here, we introduce the corpus of Chinese linguistic minimal pairs (CLiMP) to investigate what knowledge Chinese LMs acquire. CLiMP consists of sets of 1000 minimal pairs (MPs) for 16 syntactic contrasts in Chinese, covering 9 major Chinese linguistic phenomena. The MPs are semi-automatically generated, and human agreement with the labels in CLiMP is 95.8%. We evaluate 11 different LMs on CLiMP, covering n-grams, LSTMs, and Chinese BERT. We find that classifier–noun agreement and verb complement selection are the phenomena that models generally perform best at. However, models struggle the most with the ba construction, binding, and filler-gap dependencies. Overall, Chinese BERT achieves an 81.8% average accuracy, while the performances of LSTMs and 5-grams are only moderately above chance level.
In natural language processing (NLP), state-of-the-art (SOTA) semi-supervised learning (SSL) frameworks have shown great performance on deep pre-trained language models such as BERT, and are expected to significantly reduce the demand for manual labeling. However, our empirical studies indicate that these frameworks are not suitable for lightweight models such as TextCNN, LSTM and etc. In this work, we develop a new SSL framework called FLiText, which stands for Faster and Lighter semi-supervised Text classification. FLiText introduces an inspirer network together with the consistency regularization framework, which leverages a generalized regular constraint on the lightweight models for efficient SSL. As a result, FLiText obtains new SOTA performance for lightweight models across multiple SSL benchmarks on text classification. Compared with existing SOTA SSL methods on TextCNN, FLiText improves the accuracy of lightweight model TextCNN from 51.00% to 90.49% on IMDb, 39.8% to 58.06% on Yelp-5, and from 55.3% to 65.08% on Yahoo! Answer. In addition, compared with the fully supervised method on the full dataset, FLiText just uses less than 1% of labeled data to improve the accuracy by 6.59%, 3.94%, and 3.22% on the datasets of IMDb, Yelp-5, and Yahoo! Answer respectively.
Persuasion dialogue system reflects the machine’s ability to make strategic moves beyond verbal communication, and therefore differentiates itself from task-oriented or open-domain dialogues and has its own unique values. However, the repetition and inconsistency problems still persist in dialogue response generation and could substantially impact user experience and impede the persuasion outcome. Besides, although reinforcement learning (RL) approaches have achieved big success in strategic tasks such as games, it requires a sophisticated user simulator to provide real-time feedback to the dialogue system, which limits the application of RL on persuasion dialogues. To address these issues towards a better persuasion dialogue system, we apply RL to refine a language model baseline without user simulators, and distill sentence-level information about repetition, inconsistency, and task relevance through rewards. Moreover, to better accomplish the persuasion task, the model learns from human demonstration to imitate human persuasion behavior and selects the most persuasive responses. Experiments show that our model outperforms previous state-of-the-art dialogue models on both automatic metrics and human evaluation results on a donation persuasion task, and generates more diverse, consistent and persuasive conversations according to the user feedback. We will make the code and model publicly available.
Image paragraph captioning (IPC) aims to generate a fine-grained paragraph to describe the visual content of an image. Significant progress has been made by deep neural networks, in which the attention mechanism plays an essential role. However, conventional attention mechanisms tend to ignore the past alignment information, which often results in problems of repetitive captioning and incomplete captioning. In this paper, we propose an Interactive key-value Memory- augmented Attention model for image Paragraph captioning (IMAP) to keep track of the attention history (salient objects coverage information) along with the update-chain of the decoder state and therefore avoid generating repetitive or incomplete image descriptions. In addition, we employ an adaptive attention mechanism to realize adaptive alignment from image regions to caption words, where an image region can be mapped to an arbitrary number of caption words while a caption word can also attend to an arbitrary number of image regions. Extensive experiments on a benchmark dataset (i.e., Stanford) demonstrate the effectiveness of our IMAP model.
Suicide prevention hotline counselors aid individuals during difficult times through millions of calls and chats. A chatbot cannot safely replace a counselor, but we explore whether a chatbot can be developed to help train human counselors. Such a system needs to simulate intimate situations across multiple practice sessions. Open-domain dialogue systems frequently suffer from generic responses that do not characterize personal stories, so we look to infuse conversations with persona information by mimicking prototype conversations. Towards building a “Crisisbot” hotline visitor simulation, we propose a counseling strategy annotation scheme and a multi-task framework that leverages these counselor strategies to retrieve similar examples, generate diverse sub-utterances, and interleave prototype and generated sub-utterances into complex responses. We evaluate this framework with crowdworkers and experienced hotline counselors. The framework considerably increases response diversity and specificity, with limited impact to coherence. Our results also show a considerable discrepancy between crowdworker and counselor judgements, which emphasizes the importance of including target populations in system development and evaluation.