Yinheng Li


2025

pdf bib
WinSpot: GUI Grounding Benchmark with Multimodal Large Language Models
Zheng Hui | Yinheng Li | Dan Zhao | Colby Banbury | Tianyi Chen | Kazuhito Koishida
Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers)

Graphical User Interface (GUI) automation relies on accurate GUI grounding. However, obtaining large-scale, high-quality labeled data remains a key challenge, particularly in desktop environments like Windows Operating System (OS). Existing datasets primarily focus on structured web-based elements, leaving a gap in real-world GUI interaction data for non-web applications. To address this, we introduce a new framework that leverages LLMs to generate large-scale GUI grounding data, enabling automated and scalable labeling across diverse interfaces. To ensure high accuracy and reliability, we manually validated and refined 5,000 GUI coordinate-instruction pairs, creating WinSpot—the first benchmark specifically designed for GUI grounding tasks in Windows environments. WinSpot provides a high-quality dataset for training and evaluating visual GUI agents, establishing a foundation for future research in GUI automation across diverse and unstructured desktop environments.

2023

pdf bib
A Practical Survey on Zero-Shot Prompt Design for In-Context Learning
Yinheng Li
Proceedings of the 14th International Conference on Recent Advances in Natural Language Processing

The remarkable advancements in large language models (LLMs) have brought about significant improvements in Natural Language Processing(NLP) tasks. This paper presents a comprehensive review of in-context learning techniques, focusing on different types of prompts, including discrete, continuous, few-shot, and zero-shot, and their impact on LLM performance. We explore various approaches to prompt design, such as manual design, optimization algorithms, and evaluation methods, to optimize LLM performance across diverse tasks. Our review covers key research studies in prompt engineering, discussing their methodologies and contributions to the field. We also delve into the challenges faced in evaluating prompt performance, given the absence of a single “best” prompt and the importance of considering multiple metrics. In conclusion, the paper highlights the critical role of prompt design in harnessing the full potential of LLMs and provides insights into the combination of manual design, optimization techniques, and rigorous evaluation for more effective and efficient use of LLMs in various NLP tasks.