This is an internal, incomplete preview of a proposed change to the ACL Anthology.
For efficiency reasons, we don't generate MODS or Endnote formats, and the preview may be incomplete in other ways, or contain mistakes.
Do not treat this content as an official publication.
In this paper, we propose contextualized and situated text-to-speech (CS-TTS), a novel TTS task to promote more accurate and customized speech generation using prompts with Dialogues, Narratives, and Actions (DNA). While prompt-based TTS methods facilitate controllable speech generation, existing TTS datasets lack situated descriptive prompts aligned with speech data. To address this data scarcity, we develop an automatic annotation pipeline enabling multifaceted alignment among speech clips, content text, and their respective descriptions. Based on this pipeline, we present DNASpeech, a novel CS-TTS dataset with high-quality speeches with DNA prompt annotations. DNASpeech contains 2,395 distinct characters, 4,452 scenes, and 22,975 dialogue utterances, along with over 18 hours of high-quality speech recordings. To accommodate more specific task scenarios, we establish a leaderboard featuring two new subtasks for evaluation: CS-TTS with narratives and CS-TTS with dialogues. We also design an intuitive baseline model for comparison with existing state-of-the-art TTS methods on our leaderboard. Comprehensive experimental results demonstrate the quality and effectiveness of DNASpeech, validating its potential to drive advancements in the TTS field.
Adversarial attack aims to perturb input sequences and mislead a trained model for false predictions. To enhance the model robustness, defensing methods are accordingly employed by either data augmentation (involving adversarial samples) or model enhancement (modifying the training loss and/or model architecture). In contrast to previous work, this paper revisits the masked language modeling (MLM) and presents a simple yet efficient algorithm against adversarial attacks, termed [MASK] insertion for defensing (MI4D). Specifically, MI4D simply inserts [MASK] tokens to input sequences during training and inference, maximizing the intersection of the new convex hull (MI4D creates) with the original one (the clean input forms). As neither additional adversarial samples nor the model modification is required, MI4D is as computationally efficient as traditional fine-tuning. Comprehensive experiments have been conducted using three benchmark datasets and four attacking methods. MI4D yields a significant improvement (on average) of the accuracy between 3.2 and 11.1 absolute points when compared with six state-of-the-art defensing baselines.
Given a context knowledge base (KB) and a corresponding question, the Knowledge Base Question Answering task aims to retrieve correct answer entities from this KB. Despite sophisticated retrieval algorithms, the impact of the low-resource (incomplete) KB is not fully exploited, where contributing components (. key entities and/or relations) may be absent for question answering. To effectively address this problem, we propose a contrastive regularization based method, which is motivated by the learn-by-analogy capability from human readers. Specifically, the proposed work includes two major modules: the knowledge extension and sMoCo module. The former aims at exploiting the latent knowledge from the context KB and generating auxiliary information in the form of question-answer pairs. The later module utilizes those additional pairs and applies the contrastive regularization to learn informative representations, that making hard positive pairs attracted and hard negative pairs separated. Empirically, we achieved the state-of-the-art performance on the WebQuestionsSP dataset and the effectiveness of proposed modules is also evaluated.