Xiaotang Gai


2025

pdf bib
MedThink: A Rationale-Guided Framework for Explaining Medical Visual Question Answering
Xiaotang Gai | Chenyi Zhou | Jiaxiang Liu | Yang Feng | Jian Wu | Zuozhu Liu
Findings of the Association for Computational Linguistics: NAACL 2025

Medical Visual Question Answering (Med-VQA), which offers language responses to image-based medical inquiries, represents a challenging task and significant advancement in healthcare. It assists medical experts to swiftly interpret medical images, thereby enabling faster and more accurate diagnoses. However, the model interpretability and transparency of existing Med-VQA solutions are often limited, posing challenges in understanding their decision-making processes. To address this issue, we devise a semi-automated annotation process to streamline data preparation and build new benchmark Med-VQA datasets R-RAD, R-SLAKE and R-Path. These datasets provide intermediate medical decision-making rationales generated by multimodal large language models and human annotations for question-answering pairs in existing Med-VQA datasets, i.e., VQA-RAD, SLAKE and PathVQA. Moreover, we design a novel framework, MedThink, which finetunes lightweight pretrained generative models by incorporating medical decision-making rationales. MedThink includes three distinct strategies to generate decision outcomes and corresponding rationales, clearly showcasing the medical decision-making process during reasoning. Our comprehensive experiments show that our method achieves an accuracy of 83.5% on R-RAD, 86.3% on R-SLAKE and 87.2% on R-Path. These results significantly exceed those of existing state-of-the-art models with comparable parameters. Datasets and code are available at https://github.com/Tang-xiaoxiao/Medthink.

pdf bib
FairSteer: Inference Time Debiasing for LLMs with Dynamic Activation Steering
Yichen Li | Zhiting Fan | Ruizhe Chen | Xiaotang Gai | Luqi Gong | Yan Zhang | Zuozhu Liu
Findings of the Association for Computational Linguistics: ACL 2025

Large language models (LLMs) are prone to capturing biases from training corpus, leading to potential negative social impacts. Existing prompt-based debiasing methods exhibit instability due to their sensitivity to prompt changes, while fine-tuning-based techniques incur substantial computational overhead and catastrophic forgetting. In this paper, we propose FairSteer, a novel inference-time debiasing framework without requiring customized prompt design or model retraining. Motivated by the linear representation hypothesis, our preliminary investigation demonstrates that fairness-related features can be encoded into separable directions in the hidden activation space. FairSteer operates in three steps: biased activation detection, debiasing steering vector (DSV) computation, and dynamic activation steering. Specifically, it first trains a lightweight linear classifier to detect bias signatures in activations, and then computes DSVs as intervention directions derived from small contrastive prompt pairs. Subsequently, it performs debiasing by adjusting activations with DSVs in the inference stage. Comprehensive evaluation with six LLMs demonstrates the superiority of FairSteer across question-answering, counterfactual input evaluation and open-ended text generation tasks. Code will be released.