2025
pdf
bib
abs
Overview of the BioLaySumm 2025 Shared Task on Lay Summarization of Biomedical Research Articles and Radiology Reports
Chenghao Xiao
|
Kun Zhao
|
Xiao Wang
|
Siwei Wu
|
Sixing Yan
|
Tomas Goldsack
|
Sophia Ananiadou
|
Noura Al Moubayed
|
Liang Zhan
|
William K. Cheung
|
Chenghua Lin
Proceedings of the 24th Workshop on Biomedical Language Processing
This paper presents the setup and results of the third edition of the BioLaySumm shared task on Lay Summarization of Biomedical Research Articles and Radiology Reports, hosted at the BioNLP Workshop at ACL 2025. In this task edition, we aim to build on the first two editions’ successes by further increasing research interest in this important task and encouraging participants to explore novel approaches that will help advance the state-of-the-art. Specifically, we introduce the new task of Radiology Report Generation with Layman’s terms, which is parallel to the task of lay summarization of biomedical articles in the first two editions. Overall, our results show that a broad range of innovative approaches were adopted by task participants, including inspiring explorations of latest RL techniques adopted in the training of general-domain large reasoning models.
pdf
bib
abs
VCD: A Dataset for Visual Commonsense Discovery in Images
Xiangqing Shen
|
Fanfan Wang
|
Siwei Wu
|
Rui Xia
Findings of the Association for Computational Linguistics: ACL 2025
Visual commonsense plays a vital role in understanding and reasoning about the visual world. While commonsense knowledge bases like ConceptNet provide structured collections of general facts, they lack visually grounded representations. Scene graph datasets like Visual Genome, though rich in object-level descriptions, primarily focus on directly observable information and lack systematic categorization of commonsense knowledge. We present Visual Commonsense Dataset (VCD), a large-scale dataset containing over 100,000 images and 14 million object-commonsense pairs that bridges this gap. VCD introduces a novel three-level taxonomy for visual commonsense, integrating both Seen (directly observable) and Unseen (inferrable) commonsense across Property, Action, and Space aspects. Each commonsense is represented as a triple where the head entity is grounded to object bounding boxes in images, enabling scene-dependent and object-specific visual commonsense representation. To demonstrate VCD’s utility, we develop VCM, a generative model that combines a vision-language model with instruction tuning to discover diverse visual commonsense from images. Extensive evaluations demonstrate both the high quality of VCD and its value as a resource for advancing visually grounded commonsense understanding and reasoning. Our dataset and code will be released on https://github.com/NUSTM/VCD.
pdf
bib
abs
LIME: Less Is More for MLLM Evaluation
King Zhu
|
Qianbo Zang
|
Shian Jia
|
Siwei Wu
|
Feiteng Fang
|
Yizhi Li
|
Shuyue Guo
|
Tianyu Zheng
|
Jiawei Guo
|
Bo Li
|
Haoning Wu
|
Xingwei Qu
|
Jian Yang
|
Ruibo Liu
|
Xiang Yue
|
Jiaheng Liu
|
Chenghua Lin
|
Hamid Alinejad-Rokny
|
Min Yang
|
Shiwen Ni
|
Wenhao Huang
|
Ge Zhang
Findings of the Association for Computational Linguistics: ACL 2025
Multimodal Large Language Models (MLLMs) are measured on numerous benchmarks like image captioning, visual question answer, and reasoning. However, these benchmarks often include overly simple or uninformative samples, making it difficult to effectively distinguish the performance of different MLLMs. Additionally, evaluating models across many benchmarks creates a significant computational burden. To address these issues, we propose LIME (Less Is More for MLLM Evaluation), a refined and efficient benchmark curated using a semi-automated pipeline. This pipeline filters out uninformative samples and eliminates answer leakage by focusing on tasks that require image-based understanding. Our experiments show that LIME reduces the number of samples by 76% and evaluation time by 77%, while it can more effectively distinguish different models’ abilities. Notably, we find that traditional automatic metrics like CIDEr are insufficient for evaluating MLLMs’ captioning performance, and excluding the caption task score yields a more accurate reflection of overall model performance. All code and data are available at https://anonymous.4open.science/r/LIME-49CD
2024
pdf
bib
abs
SciMMIR: Benchmarking Scientific Multi-modal Information Retrieval
Siwei Wu
|
Yizhi Li
|
Kang Zhu
|
Ge Zhang
|
Yiming Liang
|
Kaijing Ma
|
Chenghao Xiao
|
Haoran Zhang
|
Bohao Yang
|
Wenhu Chen
|
Wenhao Huang
|
Noura Al Moubayed
|
Jie Fu
|
Chenghua Lin
Findings of the Association for Computational Linguistics: ACL 2024
Multi-modal information retrieval (MMIR) is a rapidly evolving field where significant progress has been made through advanced representation learning and cross-modality alignment research, particularly in image-text pairing.However, current benchmarks for evaluating MMIR performance on image-text pairings overlook the scientific domain, which has a notable gap with the generic data since the caption of scientific charts and tables usually describes the analysis of experimental results or scientific principles in contrast to human activity or scenery depicted in generic images.To bridge this gap, we develop a scientific domain-specific MMIR benchmark (SciMMIR) by leveraging open-access research paper corpora to extract data relevant to the scientific domain. This benchmark comprises 530K meticulously curated image-text pairs, extracted from figures and tables with detailed captions from scientific documents.We further annotate the image-text pairs with a two-level subset-subcategory hierarchy to facilitate a more comprehensive evaluation of the baselines. We conduct zero-shot and fine-tuned evaluations on prominent multi-modal image-captioning and visual language models, such as CLIP, BLIP, and BLIP-2.Our findings offer critical insights for MMIR in the scientific domain, including the impact of pre-training and fine-tuning settings and the effects of different visual and textual encoders.
2023
pdf
bib
abs
Dense-ATOMIC: Towards Densely-connected ATOMIC with High Knowledge Coverage and Massive Multi-hop Paths
Xiangqing Shen
|
Siwei Wu
|
Rui Xia
Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)
ATOMIC is a large-scale commonsense knowledge graph (CSKG) containing everyday if-then knowledge triplets, i.e., head event, relation, tail event. The one-hop annotation manner made ATOMIC a set of independent bipartite graphs, which ignored the numerous links between events in different bipartite graphs and consequently caused shortages in knowledge coverage and multi-hop paths. In this work, we aim to construct Dense-ATOMIC with high knowledge coverage and massive multi-hop paths. The events in ATOMIC are normalized to a consistent pattern at first. We then propose a CSKG completion method called Rel-CSKGC to predict the relation given the head event and the tail event of a triplet, and train a CSKG completion model based on existing triplets in ATOMIC. We finally utilize the model to complete the missing links in ATOMIC and accordingly construct Dense-ATOMIC. Both automatic and human evaluation on an annotated subgraph of ATOMIC demonstrate the advantage of Rel-CSKGC over strong baselines. We further conduct extensive evaluations on Dense-ATOMIC in terms of statistics, human evaluation, and simple downstream tasks, all proving Dense-ATOMIC’s advantages in Knowledge Coverage and Multi-hop Paths. Both the source code of Rel-CSKGC and Dense-ATOMIC are publicly available on
https://github.com/NUSTM/Dense-ATOMIC.
pdf
bib
abs
Commonsense Knowledge Graph Completion Via Contrastive Pretraining and Node Clustering
Siwei Wu
|
Xiangqing Shen
|
Rui Xia
Findings of the Association for Computational Linguistics: ACL 2023
The nodes in the commonsense knowledge graph (CSKG) are normally represented by free-form short text (e.g., word or phrase). Different nodes may represent the same concept. This leads to the problems of edge sparsity and node redundancy, which challenges CSKG representation and completion. On the one hand, edge sparsity limits the performance of graph representation learning; On the other hand, node redundancy makes different nodes corresponding to the same concept have inconsistent relations with other nodes. To address the two problems, we propose a new CSKG completion framework based on Contrastive Pretraining and Node Clustering (CPNC). Contrastive Pretraining constructs positive and negative head-tail node pairs on CSKG and utilizes contrastive learning to obtain better semantic node representation. Node Clustering aggregates nodes with the same concept into a latent concept, assisting the task of CSKG completion. We evaluate our CPNC approach on two CSKG completion benchmarks (CN-100K and ATOMIC), where CPNC outperforms the state-of-the-art methods. Extensive experiments demonstrate that both Contrastive Pretraining and Node Clustering can significantly improve the performance of CSKG completion. The source code of CPNC is publicly available on
https://github.com/NUSTM/CPNC.