Shiyu Huang


2025

pdf bib
Can LLM Watermarks Robustly Prevent Unauthorized Knowledge Distillation?
Leyi Pan | Aiwei Liu | Shiyu Huang | Yijian Lu | Xuming Hu | Lijie Wen | Irwin King | Philip S. Yu
Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

The radioactive nature of Large Language Model (LLM) watermarking enables the detection of watermarks inherited by student models when trained on the outputs of watermarked teacher models, making it a promising tool for preventing unauthorized knowledge distillation. However, the robustness of watermark radioactivity against adversarial actors remains largely unexplored. In this paper, we investigate whether student models can acquire the capabilities of teacher models through knowledge distillation while avoiding watermark inheritance. We propose two categories of watermark removal approaches: pre-distillation removal through untargeted and targeted training data paraphrasing (UP and TP), and post-distillation removal through inference-time watermark neutralization (WN). Extensive experiments across multiple model pairs, watermarking schemes and hyper-parameter settings demonstrate that both TP and WN thoroughly eliminate inherited watermarks, with WN achieving this while maintaining knowledge transfer efficiency and low computational overhead. Given the ongoing deployment of watermarking techniques in production LLMs, these findings emphasize the urgent need for more robust defense strategies.

2024

pdf bib
LLMArena: Assessing Capabilities of Large Language Models in Dynamic Multi-Agent Environments
Junzhe Chen | Xuming Hu | Shuodi Liu | Shiyu Huang | Wei-Wei Tu | Zhaofeng He | Lijie Wen
Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Recent advancements in large language models (LLMs) have revealed their potential for achieving autonomous agents possessing human-level intelligence. However, existing benchmarks for evaluating LLM Agents either use static datasets, potentially leading to data leakage or focus only on single-agent scenarios, overlooking the complexities of multi-agent interactions. There is a lack of a benchmark that evaluates the diverse capabilities of LLM agents in multi-agent, dynamic environments. To this end, we introduce LLMArena, a novel and easily extensible framework for evaluating the diverse capabilities of LLM in multi-agent dynamic environments. LLMArena encompasses seven distinct gaming environments, employing Trueskill scoring to assess crucial abilities in LLM agents, including spatial reasoning, strategic planning, numerical reasoning, risk assessment, communication, opponent modeling, and team collaboration. We conduct an extensive experiment and human evaluation among different sizes and types of LLMs, showing that LLMs still have a significant journey ahead in their development towards becoming fully autonomous agents, especially in opponent modeling and team collaboration. We hope LLMArena could guide future research towards enhancing these capabilities in LLMs, ultimately leading to more sophisticated and practical applications in dynamic, multi-agent settings.