Pu Jian
2025
Teaching Vision-Language Models to Ask: Resolving Ambiguity in Visual Questions
Pu Jian
|
Donglei Yu
|
Wen Yang
|
Shuo Ren
|
Jiajun Zhang
Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)
In visual question answering (VQA) context, users often pose ambiguous questions to visual language models (VLMs) due to varying expression habits. Existing research addresses such ambiguities primarily by rephrasing questions. These approaches neglect the inherently interactive nature of user interactions with VLMs, where ambiguities can be clarified through user feedback. However, research on interactive clarification faces two major challenges: (1) Benchmarks are absent to assess VLMs’ capacity for resolving ambiguities through interaction; (2) VLMs are trained to prefer answering rather than asking, preventing them from seeking clarification. To overcome these challenges, we introduce ClearVQA benchmark, which targets three common categories of ambiguity in VQA context, and encompasses various VQA scenarios. Furthermore, we propose an automated pipeline to generate ambiguity-clarification question pairs, enabling VLMs to ask reasonable clarification questions and generate more accurate and specific answers based on user feedback, as demonstrated by experimental results.
2024
Large Language Models Know What is Key Visual Entity: An LLM-assisted Multimodal Retrieval for VQA
Pu Jian
|
Donglei Yu
|
Jiajun Zhang
Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing
Visual question answering (VQA) tasks, often performed by visual language model (VLM), face challenges with long-tail knowledge. Recent retrieval-augmented VQA (RA-VQA) systems address this by retrieving and integrating external knowledge sources. However, these systems still suffer from redundant visual information irrelevant to the question during retrieval. To address these issues, in this paper, we propose LLM-RA, a novel method leveraging the reasoning capability of a large language model (LLM) to identify key visual entities, thus minimizing the impact of irrelevant information in the query of retriever. Furthermore, key visual entities are independently encoded for multimodal joint retrieval, preventing cross-entity interference. Experimental results demonstrate that our method outperforms other strong RA-VQA systems. In two knowledge-intensive VQA benchmarks, our method achieves the new state-of-the-art performance among those with similar scale of parameters and even performs comparably to models with 1-2 orders larger parameters.