Paolo Italiani


2025

pdf bib
“What do you call a dog that is incontrovertibly true? Dogma”: Testing LLM Generalization through Humor
Alessio Cocchieri | Luca Ragazzi | Paolo Italiani | Giuseppe Tagliavini | Gianluca Moro
Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Humor, requiring creativity and contextual understanding, is a hallmark of human intelligence, showcasing adaptability across linguistic scenarios. While recent advances in large language models (LLMs) demonstrate strong reasoning on various benchmarks, it remains unclear whether they truly adapt to new tasks like humans (i.e., generalize) or merely replicate memorized content. To explore this, we introduce Phunny, a new humor-based question-answering benchmark designed to assess LLMs’ reasoning through carefully crafted puns. Our dataset is manually curated to ensure novelty and minimize data contamination, providing a robust evaluation of LLMs’ linguistic comprehension. Experiments on pun comprehension, resolution, and generation reveal that most LLMs struggle with generalization, even on simple tasks, consistently underperforming the human baseline. Additionally, our detailed error analysis provides valuable insights to guide future research.

2024

pdf bib
What Are You Token About? Differentiable Perturbed Top-k Token Selection for Scientific Document Summarization
Luca Ragazzi | Paolo Italiani | Gianluca Moro | Mattia Panni
Findings of the Association for Computational Linguistics: ACL 2024

Scientific document summarization aims to condense complex and long articles in both technical and plain-language terms to facilitate the accessibility and dissemination of scientific findings. Existing datasets suffer from a deficiency in source heterogeneity, as their data predominantly stem from a single common resource, hindering effective model training and generalizability. First, we introduce SciLay, a novel dataset that includes documents from multiple natural science journals with expert-authored technical and lay summaries. Second, we propose PrunePert, a new transformer-based model that incorporates a differentiable perturbed top-k encoder layer to prune irrelevant tokens in end-to-end learning. Experimental results show that our model achieves a nearly 2x speed-up compared to a state-of-the-art linear transformer, remaining comparable in effectiveness. Additional examinations underscore the importance of employing a training dataset that includes different sources to enhance the generalizability of the models. Code is available at https://github.com/disi-unibo-nlp/sci-lay.