Muchao Ye
2025
Shadow-Activated Backdoor Attacks on Multimodal Large Language Models
Ziyi Yin
|
Muchao Ye
|
Yuanpu Cao
|
Jiaqi Wang
|
Aofei Chang
|
Han Liu
|
Jinghui Chen
|
Ting Wang
|
Fenglong Ma
Findings of the Association for Computational Linguistics: ACL 2025
This paper delves into a novel backdoor attack scenario, aiming to uncover potential security risks associated with Multimodal Large Language Models (MLLMs) during multi-round open-ended conversations with users. In the practical use of MLLMs, users have full control over the interaction process with the model, such as using their own collected photos and posing arbitrary open-ended questions. Traditional backdoor attacks that rely on adding external triggers are less applicable. To this end, we introduce a new shadow-activated backdoor attacking paradigm in this paper, wherein attacks implicitly inject malicious content into the responses of MLLMs when the responses explicitly relate to the shadowed object, i.e., without any triggers. To facilitate the shadow-activated backdoor attack, we present a novel framework named BadMLLM to achieve the desired behaviors by constructing a poisoned dataset using GPT-4 Vision and implementing an attention-regularized tuning strategy to address the semantic discontinuity between the original response and the inserted promotion. Extensive experimental results conducted on five MLLMs, three objects, and two types of promotion slogans have demonstrated impressive performance in achieving both efficacy and utility goals, thereby highlighting the significant potential risks concealed within MLLMs.
2021
Writing by Memorizing: Hierarchical Retrieval-based Medical Report Generation
Xingyi Yang
|
Muchao Ye
|
Quanzeng You
|
Fenglong Ma
Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers)
Medical report generation is one of the most challenging tasks in medical image analysis. Although existing approaches have achieved promising results, they either require a predefined template database in order to retrieve sentences or ignore the hierarchical nature of medical report generation. To address these issues, we propose MedWriter that incorporates a novel hierarchical retrieval mechanism to automatically extract both report and sentence-level templates for clinically accurate report generation. MedWriter first employs the Visual-Language Retrieval (VLR) module to retrieve the most relevant reports for the given images. To guarantee the logical coherence between generated sentences, the Language-Language Retrieval (LLR) module is introduced to retrieve relevant sentences based on the previous generated description. At last, a language decoder fuses image features and features from retrieved reports and sentences to generate meaningful medical reports. We verified the effectiveness of our model by automatic evaluation and human evaluation on two datasets, i.e., Open-I and MIMIC-CXR.