Mohamed Abouelenien


2025

pdf bib
CliniDial: A Naturally Occurring Multimodal Dialogue Dataset for Team Reflection in Action During Clinical Operation
Naihao Deng | Kapotaksha Das | Rada Mihalcea | Vitaliy Popov | Mohamed Abouelenien
Findings of the Association for Computational Linguistics: ACL 2025

In clinical operations, teamwork can be the crucial factor that determines the final outcome. Prior studies have shown that sufficient collaboration is the key factor that determines the outcome of an operation. To understand how the team practices teamwork during the operation, we collected **CliniDial** from simulations of medical operations. **CliniDial** includes the audio data and its transcriptions, the simulated physiology signals of the patient manikins, and how the team operates from two camera angles. We annotate behavior codes following an existing framework to understand the teamwork process for **CliniDial**. We pinpoint three main characteristics of our dataset, including its label imbalances, rich and natural interactions, and multiple modalities, and conduct experiments to test existing LLMs’ capabilities on handling data with these characteristics. Experimental results show that **CliniDial** poses significant challenges to the existing models, inviting future effort on developing methods that can deal with real-world clinical data. We open-source the codebase at https://github.com/MichiganNLP/CliniDial.

2021

pdf bib
MUSER: MUltimodal Stress detection using Emotion Recognition as an Auxiliary Task
Yiqun Yao | Michalis Papakostas | Mihai Burzo | Mohamed Abouelenien | Rada Mihalcea
Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies

The capability to automatically detect human stress can benefit artificial intelligent agents involved in affective computing and human-computer interaction. Stress and emotion are both human affective states, and stress has proven to have important implications on the regulation and expression of emotion. Although a series of methods have been established for multimodal stress detection, limited steps have been taken to explore the underlying inter-dependence between stress and emotion. In this work, we investigate the value of emotion recognition as an auxiliary task to improve stress detection. We propose MUSER – a transformer-based model architecture and a novel multi-task learning algorithm with speed-based dynamic sampling strategy. Evaluation on the Multimodal Stressed Emotion (MuSE) dataset shows that our model is effective for stress detection with both internal and external auxiliary tasks, and achieves state-of-the-art results.

2017

pdf bib
Identity Deception Detection
Verónica Pérez-Rosas | Quincy Davenport | Anna Mengdan Dai | Mohamed Abouelenien | Rada Mihalcea
Proceedings of the Eighth International Joint Conference on Natural Language Processing (Volume 1: Long Papers)

This paper addresses the task of detecting identity deception in language. Using a novel identity deception dataset, consisting of real and portrayed identities from 600 individuals, we show that we can build accurate identity detectors targeting both age and gender, with accuracies of up to 88. We also perform an analysis of the linguistic patterns used in identity deception, which lead to interesting insights into identity portrayers.

2015

pdf bib
Verbal and Nonverbal Clues for Real-life Deception Detection
Verónica Pérez-Rosas | Mohamed Abouelenien | Rada Mihalcea | Yao Xiao | CJ Linton | Mihai Burzo
Proceedings of the 2015 Conference on Empirical Methods in Natural Language Processing