Mengxiang Zhang
2025
GOLFer: Smaller LMs-Generated Documents Hallucination Filter & Combiner for Query Expansion in Information Retrieval
Lingyuan Liu
|
Mengxiang Zhang
Findings of the Association for Computational Linguistics: ACL 2025
Large language models (LLMs)-based query expansion for information retrieval augments queries with generated hypothetical documents with LLMs. However, its performance relies heavily on the scale of the language models (LMs), necessitating larger, more advanced LLMs. This approach is costly, computationally intensive, and often has limited accessibility. To address these limitations, we introduce GOLFer - Smaller LMs-Generated Documents Hallucination Filter & Combiner - a novel method leveraging smaller open-source LMs for query expansion. GOLFer comprises two modules: a hallucination filter and a documents combiner. The former detects and removes non-factual and inconsistent sentences in generated documents, a common issue with smaller LMs, while the latter combines the filtered content with the query using a weight vector to balance their influence. We evaluate GOLFer alongside dominant LLMs-based query expansion methods on three web search and ten low-resource datasets. Experimental results demonstrate that GOLFer consistently outperforms other methods using smaller LMs, and maintains competitive performance against methods using large-size LLMs, demonstrating its effectiveness.
Exp4Fuse: A Rank Fusion Framework for Enhanced Sparse Retrieval using Large Language Model-based Query Expansion
Lingyuan Liu
|
Mengxiang Zhang
Findings of the Association for Computational Linguistics: ACL 2025
Large Language Models (LLMs) have shown potential in generating hypothetical documents for query expansion, thereby enhancing information retrieval performance. However, the efficacy of this method is highly dependent on the quality of the generated documents, which often requires complex prompt strategies and the integration of advanced dense retrieval techniques. This can be both costly and computationally intensive. To mitigate these limitations, we explore the use of zero-shot LLM-based query expansion to improve sparse retrieval, particularly for learned sparse retrievers. We introduce a novel fusion ranking framework, Exp4Fuse, which enhances the performance of sparse retrievers through an indirect application of zero-shot LLM-based query expansion. Exp4Fuse operates by simultaneously considering two retrieval routes—one based on the original query and the other on the LLM-augmented query. It then generates two ranked lists using a sparse retriever and fuses them using a modified reciprocal rank fusion method. We conduct extensive evaluations of Exp4Fuse against leading LLM-based query expansion methods and advanced retrieval techniques on three MS MARCO-related datasets and seven low-resource datasets. Experimental results reveal that Exp4Fuse not only surpasses existing LLM-based query expansion methods in enhancing sparse retrievers but also, when combined with advanced sparse retrievers, achieves SOTA results on several benchmarks. This highlights the superior performance and effectiveness of Exp4Fuse in improving query expansion for sparse retrieval.