Lena Ann Jäger
2025
Leveraging In-Context Learning for Political Bias Testing of LLMs
Patrick Haller
|
Jannis Vamvas
|
Rico Sennrich
|
Lena Ann Jäger
Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)
A growing body of work has been querying LLMs with political questions to evaluate their potential biases. However, this probing method has limited stability, making comparisons between models unreliable. In this paper, we argue that LLMs need more context. We propose a new probing task, Questionnaire Modeling (QM), that uses human survey data as in-context examples. We show that QM improves the stability of question-based bias evaluation, and demonstrate that it may be used to compare instruction-tuned models to their base versions. Experiments with LLMs of various sizes indicate that instruction tuning can indeed change the direction of bias. Furthermore, we observe a trend that larger models are able to leverage in-context examples more effectively, and generally exhibit smaller bias scores in QM. Data and code are publicly available.
2024
On the alignment of LM language generation and human language comprehension
Lena Sophia Bolliger
|
Patrick Haller
|
Lena Ann Jäger
Proceedings of the 7th BlackboxNLP Workshop: Analyzing and Interpreting Neural Networks for NLP
Previous research on the predictive power (PP) of surprisal and entropy has focused on determining which language models (LMs) generate estimates with the highest PP on reading times, and examining for which populations the PP is strongest. In this study, we leverage eye movement data on texts that were generated using a range of decoding strategies with different LMs. We then extract the transition scores that reflect the models’ production rather than comprehension effort. This allows us to investigate the alignment of LM language production and human language comprehension. Our findings reveal that there are differences in the strength of the alignment between reading behavior and certain LM decoding strategies and that this alignment further reflects different stages of language understanding (early, late, or global processes). Although we find lower PP of transition-based measures compared to surprisal and entropy for most decoding strategies, our results provide valuable insights into which decoding strategies impose less processing effort for readers. Our code is available via https://github.com/DiLi-Lab/LM-human-alignment.