Krisztian Flautner
2025
Ranking Unraveled: Recipes for LLM Rankings in Head-to-Head AI Combat
Roland Daynauth
|
Christopher Clarke
|
Krisztian Flautner
|
Lingjia Tang
|
Jason Mars
Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)
Evaluating large language model (LLM) is a complex task. Pairwise ranking has emerged as state-of-the-art method to evaluate human preferences by having humans compare pairs of LLM outputs based on predefined criteria, enabling ranking across multiple LLMs by aggregating pairwise results through algorithms like Elo. However, applying these ranking algorithms in the context of LLM evaluation introduces several challenges, such as inconsistent ranking results when using ELO. Currently there is a lack of systematic study of those ranking algorithms in evaluating LLMs. In this paper, we explore the effectiveness of ranking systems for head-to-head comparisons of LLMs. We formally define a set of fundamental principles for effective ranking and conduct extensive evaluations on the robustness of several ranking algorithms in the context of LLMs. Our analysis uncovers key insights into the factors that affect ranking accuracy and efficiency, offering guidelines for selecting the most appropriate methods based on specific evaluation contexts and resource constraints.
2023
Label Agnostic Pre-training for Zero-shot Text Classification
Christopher Clarke
|
Yuzhao Heng
|
Yiping Kang
|
Krisztian Flautner
|
Lingjia Tang
|
Jason Mars
Findings of the Association for Computational Linguistics: ACL 2023
Conventional approaches to text classification typically assume the existence of a fixed set of predefined labels to which a given text can be classified. However, in real-world applications, there exists an infinite label space for describing a given text. In addition, depending on the aspect (sentiment, topic, etc.) and domain of the text (finance, legal, etc.), the interpretation of the label can vary greatly. This makes the task of text classification, particularly in the zero-shot scenario, extremely challenging. In this paper, we investigate the task of zero-shot text classification with the aim of improving the ability of pre-trained language models (PLMs) to generalize to both seen and unseen data across varying aspects and domains. To solve this we introduce two new simple yet effective pre-training strategies, Implicit and Explicit pre-training. These methods inject aspect-level understanding into the model at train time with the goal of conditioning the model to build task-level understanding. To evaluate this, we construct and release UTCD, a new benchmark dataset for evaluating text classification in zero-shot settings. Experimental results on UTCD show that our approach achieves improved zero-shot generalization on a suite of challenging datasets across an array of zero-shot formalizations.
Search
Fix author
Co-authors
- Christopher Clarke 2
- Jason Mars 2
- Lingjia Tang 2
- Roland Daynauth 1
- Yuzhao Heng 1
- show all...