2025
pdf
bib
abs
Delving into Multilingual Ethical Bias: The MSQAD with Statistical Hypothesis Tests for Large Language Models
Seunguk Yu
|
Juhwan Choi
|
YoungBin Kim
Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)
Despite the recent strides in large language models, studies have underscored the existence of social biases within these systems. In this paper, we delve into the validation and comparison of the ethical biases of LLMs concerning globally discussed and potentially sensitive topics, hypothesizing that these biases may arise from language-specific distinctions. Introducing the Multilingual Sensitive Questions & Answers Dataset (**MSQAD**), we collected news articles from Human Rights Watch covering 17 topics, and generated socially sensitive questions along with corresponding responses in multiple languages. We scrutinized the biases of these responses across languages and topics, employing two statistical hypothesis tests. The results showed that the null hypotheses were rejected in most cases, indicating biases arising from cross-language differences. It demonstrates that ethical biases in responses are widespread across various languages, and notably, these biases were prevalent even among different LLMs. By making the proposed MSQAD openly available, we aim to facilitate future research endeavors focused on examining cross-language biases in LLMs and their variant models.
pdf
bib
abs
Plug-in and Fine-tuning: Bridging the Gap between Small Language Models and Large Language Models
Kyeonghyun Kim
|
Jinhee Jang
|
Juhwan Choi
|
Yoonji Lee
|
Kyohoon Jin
|
YoungBin Kim
Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)
Large language models (LLMs) are renowned for their extensive linguistic knowledge and strong generalization capabilities, but their high computational demands make them unsuitable for resource-constrained environments. In contrast, small language models (SLMs) are computationally efficient but often lack the broad generalization capacity of LLMs. To bridge this gap, we propose PiFi, a novel framework that combines the strengths of both LLMs and SLMs to achieve high performance while maintaining efficiency. PiFi integrates a single frozen layer from an LLM into a SLM and fine-tunes the combined model for specific tasks, boosting performance without a significant increase in computational cost. We show that PiFi delivers consistent performance improvements across a range of natural language processing tasks, including both natural language understanding and generation. Moreover, our findings demonstrate PiFi’s ability to effectively leverage LLM knowledge, enhancing generalization to unseen domains and facilitating the transfer of linguistic abilities.
pdf
bib
abs
See-Saw Modality Balance: See Gradient, and Sew Impaired Vision-Language Balance to Mitigate Dominant Modality Bias
Junehyoung Kwon
|
MiHyeon Kim
|
Eunju Lee
|
Juhwan Choi
|
YoungBin Kim
Proceedings of the 2025 Conference of the Nations of the Americas Chapter of the Association for Computational Linguistics: Human Language Technologies (Volume 1: Long Papers)
Vision-language (VL) models have demonstrated strong performance across various tasks. However, these models often rely on a specific modality for predictions, leading to “dominant modality bias.” This bias significantly hurts performance, especially when one modality is impaired. In this study, we analyze model behavior under dominant modality bias and theoretically show that unaligned gradients or differences in gradient magnitudes prevent balanced convergence of the loss. Based on these findings, we propose a novel framework, **BalGrad** to mitigate dominant modality bias. Our approach includes inter-modality gradient reweighting, adjusting the gradient of KL divergence based on each modality’s contribution, and inter-task gradient projection to align task directions in a non-conflicting manner. Experiments on UPMC Food-101, Hateful Memes, and MM-IMDb datasets confirm that **BalGrad** effectively alleviates over-reliance on specific modalities when making predictions.
2024
pdf
bib
abs
AutoAugment Is What You Need: Enhancing Rule-based Augmentation Methods in Low-resource Regimes
Juhwan Choi
|
Kyohoon Jin
|
Junho Lee
|
Sangmin Song
|
YoungBin Kim
Proceedings of the 18th Conference of the European Chapter of the Association for Computational Linguistics: Student Research Workshop
Text data augmentation is a complex problem due to the discrete nature of sentences. Although rule-based augmentation methods are widely adopted in real-world applications because of their simplicity, they suffer from potential semantic damage. Previous researchers have suggested easy data augmentation with soft labels (softEDA), employing label smoothing to mitigate this problem. However, finding the best factor for each model and dataset is challenging; therefore, using softEDA in real-world applications is still difficult. In this paper, we propose adapting AutoAugment to solve this problem. The experimental results suggest that the proposed method can boost existing augmentation methods and that rule-based methods can enhance cutting-edge pretrained language models. We offer the source code.
pdf
bib
abs
UniGen: Universal Domain Generalization for Sentiment Classification via Zero-shot Dataset Generation
Juhwan Choi
|
Yeonghwa Kim
|
Seunguk Yu
|
JungMin Yun
|
YoungBin Kim
Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing
Although pre-trained language models have exhibited great flexibility and versatility with prompt-based few-shot learning, they suffer from the extensive parameter size and limited applicability for inference. Recent studies have suggested that PLMs be used as dataset generators and a tiny task-specific model be trained to achieve efficient inference. However, their applicability to various domains is limited because they tend to generate domain-specific datasets. In this work, we propose a novel approach to universal domain generalization that generates a dataset regardless of the target domain. This allows for generalization of the tiny task model to any domain that shares the label space, thus enhancing the real-world applicability of the dataset generation paradigm. Our experiments indicate that the proposed method accomplishes generalizability across various domains while using a parameter set that is orders of magnitude smaller than PLMs.
pdf
bib
abs
Multi-News+: Cost-efficient Dataset Cleansing via LLM-based Data Annotation
Juhwan Choi
|
JungMin Yun
|
Kyohoon Jin
|
YoungBin Kim
Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing
The quality of the dataset is crucial for ensuring optimal performance and reliability of downstream task models. However, datasets often contain noisy data inadvertently included during the construction process. Numerous attempts have been made to correct this issue through human annotators. However, hiring and managing human annotators is expensive and time-consuming. As an alternative, recent studies are exploring the use of large language models (LLMs) for data annotation.In this study, we present a case study that extends the application of LLM-based data annotation to enhance the quality of existing datasets through a cleansing strategy. Specifically, we leverage approaches such as chain-of-thought and majority voting to imitate human annotation and classify unrelated documents from the Multi-News dataset, which is widely used for the multi-document summarization task. Through our proposed cleansing method, we introduce an enhanced Multi-News+. By employing LLMs for data cleansing, we demonstrate an efficient and effective approach to improving dataset quality without relying on expensive human annotation efforts.
pdf
bib
abs
GPTs Are Multilingual Annotators for Sequence Generation Tasks
Juhwan Choi
|
Eunju Lee
|
Kyohoon Jin
|
YoungBin Kim
Findings of the Association for Computational Linguistics: EACL 2024
Data annotation is an essential step for constructing new datasets. However, the conventional approach of data annotation through crowdsourcing is both time-consuming and expensive. In addition, the complexity of this process increases when dealing with low-resource languages owing to the difference in the language pool of crowdworkers. To address these issues, this study proposes an autonomous annotation method by utilizing large language models, which have been recently demonstrated to exhibit remarkable performance. Through our experiments, we demonstrate that the proposed method is not just cost-efficient but also applicable for low-resource language annotation. Additionally, we constructed an image captioning dataset using our approach and are committed to open this dataset for future study. We have opened our source code for further study and reproducibility.
pdf
bib
abs
Don’t be a Fool: Pooling Strategies in Offensive Language Detection from User-Intended Adversarial Attacks
Seunguk Yu
|
Juhwan Choi
|
YoungBin Kim
Findings of the Association for Computational Linguistics: NAACL 2024
Offensive language detection is an important task for filtering out abusive expressions and improving online user experiences. However, malicious users often attempt to avoid filtering systems through the involvement of textual noises. In this paper, we propose these evasions as user-intended adversarial attacks that insert special symbols or leverage the distinctive features of the Korean language. Furthermore, we introduce simple yet effective pooling strategies in a layer-wise manner to defend against the proposed attacks, focusing on the preceding layers not just the last layer to capture both offensiveness and token embeddings. We demonstrate that these pooling strategies are more robust to performance degradation even when the attack rate is increased, without directly training of such patterns. Notably, we found that models pre-trained on clean texts could achieve a comparable performance in detecting attacked offensive language, to models pre-trained on noisy texts by employing these pooling strategies.
pdf
bib
abs
Enhancing Effectiveness and Robustness in a Low-Resource Regime via Decision-Boundary-aware Data Augmentation
Kyohoon Jin
|
Junho Lee
|
Juhwan Choi
|
Sangmin Song
|
Youngbin Kim
Proceedings of the 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation (LREC-COLING 2024)
Efforts to leverage deep learning models in low-resource regimes have led to numerous augmentation studies. However, the direct application of methods, such as mixup and cutout, is limited due to the discrete characteristics of the textual data. While methods using pre trained language models have exhibited good efficiency, they require additional considerations for robustness. Inspired by recent studies on decision boundaries, this paper proposes a decision-boundary-aware data augmentation strategy to enhance robustness using pretrained language models. The proposed technique first focuses on shifting the latent features closer to the decision boundary, followed by reconstruction to generate an ambiguous version with a soft label. Additionally, mid-K sampling is suggested to enhance the diversity of the generated sentences. This paper demonstrates the performance of the proposed augmentation strategy compared to other methods through extensive experiments. Furthermore, the ablation study demonstrates the effect of soft labels and mid-K sampling and the extensibility of the method with curriculum data augmentation.