Jintao Huang
2025
Sharper and Faster mean Better: Towards More Efficient Vision-Language Model for Hour-scale Long Video Understanding
Daoze Zhang
|
Yuze Zhao
|
Jintao Huang
|
Yingda Chen
Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)
Despite existing multimodal language models showing impressive performance on the video understanding task, extremely long videos still pose significant challenges to language model’s context length, memory consumption, and computational complexity. To address these issues, we propose a vision-language model named Sophia for long video understanding, which can efficiently handle hour-scale long videos. First, we employ a Shot-adaptive Frame Pruning technique, which naturally segments long videos into multiple camera shots, to more sharply identify and focus on the frames relevant to the query. Additionally, we introduce a Hierarchical Attention mechanism to effectively model the long-term temporal dependencies between video frames, which achieves a time and space complexity of O(N) w.r.t. the input sequence length N while theoretically maintaining the global modeling efficiency. Experimentally, our Sophia exhibits competitive performance compared to existing video understanding baselines across various benchmarks for long video understanding with reduced time and memory consumption. The model code and weights are available at https://huggingface.co/Tao-tse/Sophia.
2024
Revisiting Data Reconstruction Attacks on Real-world Dataset for Federated Natural Language Understanding
Zhuo Zhang
|
Jintao Huang
|
Xiangjing Hu
|
Jingyuan Zhang
|
Yating Zhang
|
Hui Wang
|
Yue Yu
|
Qifan Wang
|
Lizhen Qu
|
Zenglin Xu
Proceedings of the 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation (LREC-COLING 2024)
With the growing privacy concerns surrounding natural language understanding (NLU) applications, the need to train high-quality models while safeguarding data privacy has reached unprecedented importance. Federated learning (FL) offers a promising approach to collaborative model training by exchanging model gradients. However, many studies show that eavesdroppers in FL could develop sophisticated data reconstruction attack (DRA) to accurately reconstruct clients’ data from the shared gradients. Regrettably, current DRA methods in federated NLU have been mostly conducted on public datasets, lacking a comprehensive evaluation of real-world privacy datasets. To address this limitation, this paper presents a pioneering study that reexamines the performance of these DRA methods as well as corresponding defense methods. Specifically, we introduce a novel real-world privacy dataset called FedAttack which leads to a significant discovery: existing DRA methods usually fail to accurately recover the original text of real-world privacy data. In detail, the tokens within a recovery sentence are disordered and intertwined with tokens from other sentences in the same training batch. Moreover, our experiments demonstrate that the performance of DRA is also influenced by different languages and domains. By discovering these findings, our work lays a solid foundation for further research into the development of more practical DRA methods and corresponding defenses.