Hang Wu


2025

pdf bib
BFS-Prover: Scalable Best-First Tree Search for LLM-based Automatic Theorem Proving
Ran Xin | Chenguang Xi | Jie Yang | Feng Chen | Hang Wu | Xia Xiao | Yifan Sun | Shen Zheng | Ming Ding
Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Recent advancements in large language models (LLMs) have spurred growing interest in automatic theorem proving using Lean4, where effective tree search methods are crucial for navigating the underlying large proof search spaces. While the existing approaches primarily rely on value functions and/or Monte Carlo Tree Search (MCTS), the potential of simpler methods like Best-First Tree Search (BFS) remains underexplored. In this paper, we investigate whether BFS can achieve competitive performance in large-scale theorem proving tasks. We present BFS-Prover, a scalable expert iteration framework, featuring three key innovations. First, we implement strategic data filtering at each expert iteration round, excluding problems solvable via beam search node expansion to focus on harder cases. Second, we improve the sample efficiency of BFS through Direct Preference Optimization (DPO) applied to state-tactic pairs automatically annotated with compiler error feedback, refining the LLM’s policy to prioritize productive expansions. Third, we employ length normalization in BFS to encourage exploration of deeper proof paths. BFS-Prover achieves a state-of-the-art score of 72.95 on the MiniF2F test set and therefore challenges the perceived necessity of complex tree search methods, demonstrating that BFS can achieve competitive performance when properly scaled.

2024

pdf bib
MedAdapter: Efficient Test-Time Adaptation of Large Language Models Towards Medical Reasoning
Wenqi Shi | Ran Xu | Yuchen Zhuang | Yue Yu | Haotian Sun | Hang Wu | Carl Yang | May Dongmei Wang
Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing

Despite their improved capabilities in generation and reasoning, adapting large language models (LLMs) to the biomedical domain remains challenging due to their immense size and privacy concerns. In this study, we propose MedAdapter, a unified post-hoc adapter for test-time adaptation of LLMs towards biomedical applications. Instead of fine-tuning the entire LLM, MedAdapter effectively adapts the original model by fine-tuning only a small BERT-sized adapter to rank candidate solutions generated by LLMs. Experiments on four biomedical tasks across eight datasets demonstrate that MedAdapter effectively adapts both white-box and black-box LLMs in biomedical reasoning, achieving average performance improvements of 18.24% and 10.96%, respectively, without requiring extensive computational resources or sharing data with third parties. MedAdapter also yields enhanced performance when combined with train-time adaptation, highlighting a flexible and complementary solution to existing adaptation methods. Faced with the challenges of balancing model performance, computational resources, and data privacy, MedAdapter provides an efficient, privacy-preserving, cost-effective, and transparent solution for adapting LLMs to the biomedical domain.

pdf bib
EHRAgent: Code Empowers Large Language Models for Few-shot Complex Tabular Reasoning on Electronic Health Records
Wenqi Shi | Ran Xu | Yuchen Zhuang | Yue Yu | Jieyu Zhang | Hang Wu | Yuanda Zhu | Joyce C. Ho | Carl Yang | May Dongmei Wang
Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing

Clinicians often rely on data engineers to retrieve complex patient information from electronic health record (EHR) systems, a process that is both inefficient and time-consuming. We propose EHRAgent, a large language model (LLM) agent empowered with accumulative domain knowledge and robust coding capability. EHRAgent enables autonomous code generation and execution to facilitate clinicians in directly interacting with EHRs using natural language. Specifically, we formulate a multi-tabular reasoning task based on EHRs as a tool-use planning process, efficiently decomposing a complex task into a sequence of manageable actions with external toolsets. We first inject relevant medical information to enable EHRAgent to effectively reason about the given query, identifying and extracting the required records from the appropriate tables. By integrating interactive coding and execution feedback, EHRAgent then effectively learns from error messages and iteratively improves its originally generated code. Experiments on three real-world EHR datasets show that EHRAgent outperforms the strongest baseline by up to 29.6% in success rate, verifying its strong capacity to tackle complex clinical tasks with minimal demonstrations.