Han Xiao


2025

pdf bib
AIR-Bench: Automated Heterogeneous Information Retrieval Benchmark
Jianlyu Chen | Nan Wang | Chaofan Li | Bo Wang | Shitao Xiao | Han Xiao | Hao Liao | Defu Lian | Zheng Liu
Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Evaluation plays a crucial role in the advancement of information retrieval (IR) models. However, current benchmarks, which are based on predefined domains and human-labeled data, face limitations in addressing evaluation needs for emerging domains both cost-effectively and efficiently. To address this challenge, we propose the Automated Heterogeneous Information Retrieval Benchmark (AIR-Bench). AIR-Bench is distinguished by three key features: 1) Automated. The testing data in AIR-Bench is automatically generated by large language models (LLMs) without human intervention. 2) Heterogeneous. The testing data in AIR-Bench is generated with respect to diverse tasks, domains and languages. 3) Dynamic. The domains and languages covered by AIR-Bench are constantly augmented to provide an increasingly comprehensive evaluation benchmark for community developers. We develop a reliable and robust data generation pipeline to automatically create diverse and high-quality evaluation datasets based on real-world corpora. Our findings demonstrate that the generated testing data in AIR-Bench aligns well with human-labeled testing data, making AIR-Bench a dependable benchmark for evaluating IR models. The resources in AIR-Bench are publicly available at https://github.com/AIR-Bench/AIR-Bench.

pdf bib
AMEX: Android Multi-annotation Expo Dataset for Mobile GUI Agents
Yuxiang Chai | Siyuan Huang | Yazhe Niu | Han Xiao | Liang Liu | Guozhi Wang | Dingyu Zhang | Shuai Ren | Hongsheng Li
Findings of the Association for Computational Linguistics: ACL 2025

AI agents have drawn increasing attention mostly on their ability to perceive environments, understand tasks, and autonomously achieve goals. To advance research on AI agents in mobile scenarios, we introduce the Android Multi-annotation EXpo (AMEX), a comprehensive, large-scale dataset designed for generalist mobile GUI-control agents which are capable of completing tasks by directly interacting with the graphical user interface (GUI) on mobile devices. AMEX comprises over 104K high-resolution screenshots from popular mobile applications, which are annotated at multiple levels. Unlike existing GUI-related datasets, e.g., Rico, AitW, etc., AMEX includes three levels of annotations: GUI interactive element grounding, GUI screen and element functionality descriptions, and complex natural language instructions with stepwise GUI-action chains. We develop this dataset from a more instructive and detailed perspective, complementing the general settings of existing datasets. Additionally, we finetune a baseline model SPHINX Agent and illustrate the effectiveness of AMEX.

pdf bib
MathCoder-VL: Bridging Vision and Code for Enhanced Multimodal Mathematical Reasoning
Ke Wang | Junting Pan | Linda Wei | Aojun Zhou | Weikang Shi | Zimu Lu | Han Xiao | Yunqiao Yang | Houxing Ren | Mingjie Zhan | Hongsheng Li
Findings of the Association for Computational Linguistics: ACL 2025

Natural language image-caption datasets, widely used for training Large Multimodal Models, mainly focus on natural scenarios and overlook the intricate details of mathematical figures that are critical for problem-solving, hindering the advancement of current LMMs in multimodal mathematical reasoning. To this end, we propose leveraging code as supervision for cross-modal alignment, since code inherently encodes all information needed to generate corresponding figures, establishing a precise connection between the two modalities. Specifically, we co-develop our image-to-code model and dataset with model-in-the-loop approach, resulting in an image-to-code model, FigCodifier and ImgCode-8.6M dataset, the largest image-code dataset to date. Furthermore, we utilize FigCodifier to synthesize novel mathematical figures and then construct MM-MathInstruct-3M, a high-quality multimodal math instruction fine-tuning dataset. Finally, we present MathCoder-VL, trained with ImgCode-8.6M for cross-modal alignment and subsequently fine-tuned on MM-MathInstruct-3M for multimodal math problem solving. Our model achieves a new open-source SOTA across all six metrics. Notably, it surpasses GPT-4o and Claude 3.5 Sonnet in the geometry problem-solving subset of MathVista, achieving improvements of 8.9% and 9.2%.

2024

pdf bib
Jina-ColBERT-v2: A General-Purpose Multilingual Late Interaction Retriever
Rohan Jha | Bo Wang | Michael Günther | Georgios Mastrapas | Saba Sturua | Isabelle Mohr | Andreas Koukounas | Mohammad Kalim Wang | Nan Wang | Han Xiao
Proceedings of the Fourth Workshop on Multilingual Representation Learning (MRL 2024)

Multi-vector dense models, such as ColBERT, have proven highly effective in information retrieval. ColBERT’s late interaction scoring approximates the joint query-document attention seen in cross-encoders while maintaining inference efficiency closer to traditional dense retrieval models, thanks to its bi-encoder architecture and recent optimizations in indexing and search. In this paper, we introduce a novel architecture and a training framework to support long context window and multilingual retrieval. Leveraging Matryoshka Representation Loss, we further demonstrate that the reducing the embedding dimensionality from 128 to 64 has insignificant impact on the model’s retrieval performance and cut storage requirements by up to 50%. Our new model, Jina-ColBERT-v2, demonstrates strong performance across a range of English and multilingual retrieval tasks,

2023

pdf bib
HiFi: High-Information Attention Heads Hold for Parameter-Efficient Model Adaptation
Anchun Gui | Han Xiao
Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

To fully leverage the advantages of large-scale pre-trained language models (PLMs) on downstream tasks, it has become a ubiquitous adaptation paradigm to fine-tune the entire parameters of PLMs. However, this paradigm poses issues of inefficient updating and resource over-consuming for fine-tuning in data-scarce and resource-limited scenarios, because of the large scale of parameters in PLMs. To alleviate these concerns, in this paper, we propose a parameter-efficient fine-tuning method HiFi, that is, only the highly informative and strongly correlated attention heads for the specific task are fine-tuned. To search for those significant attention heads, we develop a novel framework to analyze the effectiveness of heads. Specifically, we first model the relationship between heads into a graph from two perspectives of information richness and correlation, and then apply PageRank algorithm to determine the relative importance of each head. Extensive experiments on the GLUE benchmark demonstrate the effectiveness of our method, and show that HiFi obtains state-of-the-art performance over the prior baselines.

pdf bib
Jina Embeddings: A Novel Set of High-Performance Sentence Embedding Models
Michael Günther | Louis Milliken | Jonathan Geuter | Georgios Mastrapas | Bo Wang | Han Xiao
Proceedings of the 3rd Workshop for Natural Language Processing Open Source Software (NLP-OSS 2023)

Jina Embeddings constitutes a set of high-performance sentence embedding models adept at translating textual inputs into numerical representations, capturing the semantics of the text. These models excel in applications like dense retrieval and semantic textual similarity. This paper details the development of Jina Embeddings, starting with the creation of high-quality pairwise and triplet datasets.It underlines the crucial role of data cleaning in dataset preparation, offers in-depth insights into the model training process, and concludes with a comprehensive performance evaluation using the Massive Text Embedding Benchmark (MTEB). Furthermore, to increase the model’s awareness of grammatical negation, we construct a novel training and evaluation dataset of negated and non-negated statements, which we make publicly available to the community.

2016

pdf bib
TransG : A Generative Model for Knowledge Graph Embedding
Han Xiao | Minlie Huang | Xiaoyan Zhu
Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)