Fan Lin


2025

pdf bib
LaySummX at BioLaySumm: Retrieval-Augmented Fine-Tuning for Biomedical Lay Summarization Using Abstracts and Retrieved Full-Text Context
Fan Lin | Dezhi Yu
Proceedings of the 24th Workshop on Biomedical Language Processing (Shared Tasks)

Generating lay summaries of biomedical research remains a time-intensive task, despite their importance in bridging the gap between scientific findings and non-expert audiences. This study introduces a retrieval-augmented fine-tuning framework for biomedical lay summarization, integrating abstract-driven semantic retrieval with LoRA-tuned LLaMA 3.1 models. Abstracts are used as queries to retrieve relevant text segments from full-text articles, which are then incorporated into prompts for supervised fine-tuning. Evaluations on the PLOS and eLife datasets show that this hybrid approach significantly improves relevance and factuality metrics compared to both base models and those tuned individually, while maintaining competitive readability. Prompt design experiments highlight a trade-off between readability and factual accuracy. Our fine-tuned model demonstrates strong performance in relevance and factuality among open-source systems and rivals closed-source models such as GPT, providing an efficient and effective solution for domain-specific lay summarization.

pdf bib
Diagnosing Failures in Large Language Models’ Answers: Integrating Error Attribution into Evaluation Framework
Zishan Xu | Shuyi Xie | Qingsong Lv | Shupei Xiao | Linlin Song | Sui Wenjuan | Fan Lin
Findings of the Association for Computational Linguistics: ACL 2025

With the widespread application of Large Language Models (LLMs) in various tasks, the mainstream LLM platforms generate massive user-model interactions daily. In order to efficiently analyze the performance of models and diagnose failures in their answers, it is essential to develop an automated framework to systematically categorize and attribute errors. However, existing evaluation models lack error attribution capability. In this work, we establish a comprehensive Misattribution Framework with 6 primary and 15 secondary categories to facilitate in-depth analysis. Based on this framework, we present AttriData, a dataset specifically designed for error attribution, encompassing misattribution, along with the corresponding scores and feedback. We also propose MisAttributionLLM, a fine-tuned model on AttriData, which is the first general-purpose judge model capable of simultaneously generating score, misattribution, and feedback. Extensive experiments and analyses are conducted to confirm the effectiveness and robustness of our proposed method.