Detecting text generated by Large Language Models (LLMs) is crucial, yet current detectors often struggle to generalize in open-world settings. We introduce Learning2Rewrite, a novel framework to detect LLM-generated text with exceptional generalization to unseen domains. Capitalized on the finding that LLMs inherently modify LLM-generated content less than human-written text when rewriting, we train an LLM to amplify this disparity, yielding a more distinguishable and generalizable edit distance across diverse text distributions. Extensive experiments on data from 21 independent domains and four major LLMs (GPT-3.5, GPT-4, Gemini, and Llama-3) demonstrate that our detector outperforms state-of-the-art detection methods by up to 23.04% in AUROC for in-distribution tests, 35.10% for out-of-distribution tests, and 48.66% under adversarial attacks. Our unique training objective ensures better generalizability compared to directly training for classification, even when leveraging the same amount of tunable parameters. Our findings suggest that reinforcing LLMs’ inherent rewriting tendencies offers a robust and scalable solution for detecting LLM-generated text.
Although value-aligned language models (LMs) appear unbiased in explicit bias evaluations, they often exhibit stereotypes in implicit word association tasks, raising concerns about their fair usage. We investigate the mechanisms behind this discrepancy and find that alignment surprisingly amplifies implicit bias in model outputs. Specifically, we show that aligned LMs, unlike their unaligned counterparts, overlook racial concepts in early internal representations when the context is ambiguous. Not representing race likely fails to activate safety guardrails, leading to unintended biases. Inspired by this insight, we propose a new bias mitigation strategy that works by incentivizing the representation of racial concepts in the early model layers. In contrast to conventional mitigation methods of machine unlearning, our interventions find that steering the model to be more aware of racial concepts effectively mitigates implicit bias. Similar to race blindness in humans, ignoring racial nuances can inadvertently perpetuate subtle biases in LMs.
We have uncovered a powerful jailbreak technique that leverages large language models’ ability to diverge from prior context, enabling them to bypass safety constraints and generate harmful outputs. By simply instructing the LLM to deviate and obfuscate previous attacks, our method dramatically outperforms existing approaches, achieving up to a 62.83% higher success rate in compromising ten leading chatbots, including GPT-4, Gemini, and Llama, while using only 12.9% of the queries. This revelation exposes a critical flaw in current LLM safety training, suggesting that existing methods may merely mask vulnerabilities rather than eliminate them. Our findings sound an urgent alarm for the need to revolutionize testing methodologies to ensure robust and reliable LLM security.
Large language models (LLMs) have exhibited remarkable fluency across various tasks. However, their unethical applications, such as disseminating disinformation, have become a growing concern. Although recent works have proposed a number of LLM detection methods, their robustness and reliability remain unclear. In this paper, we present RAFT: a grammar error-free black-box attack against existing LLM detectors. In contrast to previous attacks for language models, our method exploits the transferability of LLM embeddings at the word-level while preserving the original text quality. We leverage an auxiliary embedding to greedily select candidate words to perturb against the target detector. Experiments reveal that our attack effectively compromises all detectors in the study across various domains by up to 99%, and are transferable across source models. Manual human evaluation studies show our attacks are realistic and indistinguishable from original human-written text. We also show that examples generated by RAFT can be used to train adversarially robust detectors. Our work shows that current LLM detectors are not adversarially robust, underscoring the urgent need for more resilient detection mechanisms.