Amin Beheshti


2025

pdf bib
VITAL: A New Dataset for Benchmarking Pluralistic Alignment in Healthcare
Anudeex Shetty | Amin Beheshti | Mark Dras | Usman Naseem
Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Alignment techniques have become central to ensuring that Large Language Models (LLMs) generate outputs consistent with human values. However, existing alignment paradigms often model an averaged or monolithic preference, failing to account for the diversity of perspectives across cultures, demographics, and communities. This limitation is particularly critical in health-related scenarios, where plurality is essential due to the influence of culture, religion, personal values, and conflicting opinions. Despite progress in pluralistic alignment, no prior work has focused on health, likely due to the unavailability of publicly available datasets. To address this gap, we introduce VITAL, a new benchmark dataset comprising 13.1K value-laden situations and 5.4K multiple-choice questions focused on health, designed to assess and benchmark pluralistic alignment methodologies. Through extensive evaluation of eight LLMs of varying sizes, we demonstrate that existing pluralistic alignment techniques fall short in effectively accommodating diverse healthcare beliefs, underscoring the need for tailored AI alignment in specific domains. This work highlights the limitations of current approaches and lays the groundwork for developing health-specific alignment solutions.

2024

pdf bib
StyleDubber: Towards Multi-Scale Style Learning for Movie Dubbing
Gaoxiang Cong | Yuankai Qi | Liang Li | Amin Beheshti | Zhedong Zhang | Anton Hengel | Ming-Hsuan Yang | Chenggang Yan | Qingming Huang
Findings of the Association for Computational Linguistics: ACL 2024

Given a script, the challenge in Movie Dubbing (Visual Voice Cloning, V2C) is to generate speech that aligns well with the video in both time and emotion, based on the tone of a reference audio track. Existing state-of-the-art V2C models break the phonemes in the script according to the divisions between video frames, which solves the temporal alignment problem but leads to incomplete phoneme pronunciation and poor identity stability. To address this problem, we propose StyleDubber, which switches dubbing learning from the frame level to phoneme level. It contains three main components: (1) A multimodal style adaptor operating at the phoneme level to learn pronunciation style from the reference audio, and generate intermediate representations informed by the facial emotion presented in the video; (2) An utterance-level style learning module, which guides both the mel-spectrogram decoding and the refining processes from the intermediate embeddings to improve the overall style expression; And (3) a phoneme-guided lip aligner to maintain lip sync. Extensive experiments on two of the primary benchmarks, V2C and Grid, demonstrate the favorable performance of the proposed method as compared to the current state-of-the-art. The code will be made available at https://github.com/GalaxyCong/StyleDubber.

2022

pdf bib
Transformer-based Models for Long Document Summarisation in Financial Domain
Urvashi Khanna | Samira Ghodratnama | Diego Moll ́a | Amin Beheshti
Proceedings of the 4th Financial Narrative Processing Workshop @LREC2022

Summarisation of long financial documents is a challenging task due to the lack of large-scale datasets and the need for domain knowledge experts to create human-written summaries. Traditional summarisation approaches that generate a summary based on the content cannot produce summaries comparable to human-written ones and thus are rarely used in practice. In this work, we use the Longformer-Encoder-Decoder (LED) model to handle long financial reports. We describe our experiments and participating systems in the financial narrative summarisation shared task. Multi-stage fine-tuning helps the model generalise better on niche domains and avoids the problem of catastrophic forgetting. We further investigate the effect of the staged fine-tuning approach on the FNS dataset. Our systems achieved promising results in terms of ROUGE scores on the validation dataset.