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Abstract

The translation of basic science into clinical in-
terventions represents a critical yet prolonged
pathway in biomedical research, with signifi-
cant implications for human health. While pre-
vious translation prediction approaches have
focused on citation-based and metadata met-
rics or semantic analysis, the complex net-
work structure of scientific knowledge remains
under-explored. In this work, we present
a novel graph neural network approach that
leverages both semantic and structural infor-
mation to predict which research publications
will lead to clinical trials. Our model anal-
yses a comprehensive dataset of 19 million
publication nodes, using transformer-based ti-
tle and abstract sentence embeddings within
their citation network context. We demonstrate
that our graph-based architecture, which em-
ploys attention mechanisms over local citation
neighbourhoods, outperforms traditional con-
volutional approaches by effectively capturing
knowledge flow patterns (F1 improvement of
4.5 and 3.5 percentage points for direct and
indirect translation). Our metadata is care-
fully selected to eliminate potential biases from
researcher-specific information, while main-
taining predictive power through network struc-
tural features. Notably, our model achieves
state-of-the-art performance using only content-
based features, showing that language inher-
ently captures many of the predictive features
of translation. Through rigorous validation on a
held-out time window (2021), we demonstrate
generalisation across different biomedical do-
mains and provide insights into early indica-
tors of translational research potential. Our
system offers immediate practical value for
research funders, enabling evidence-based as-
sessment of translational potential during grant
review processes. The code for GraphTrans-
late is available at https://github.com/
wellcometrust/graph-translate.
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1 Introduction

The path from scientific discovery to clinical appli-
cation remains a critical challenge in biomedical
research. Although laboratory research and pre-
clinical studies can lead to advances in scientific
understanding, translating these findings into real-
world clinical interventions that directly benefit
patients is a complex process involving multiple
stages, including experimental validation, regula-
tory approval, and clinical trials, each of which in-
troduces uncertainty and challenges (Contopoulos-
Ioannidis et al., 2008). Moreover, despite substan-
tial global investment in medical research and de-
velopment, only a tiny fraction of basic research
findings successfully translate into clinical treat-
ments (Contopoulos-Ioannidis et al., 2003). This
inefficiency in the translation pipeline, combined
with the decades-long timeframe typically required
for bench-to-bedside translation (Morris et al.,
2011), creates an urgent need for tools that can
identify promising translational research early in
its lifecycle.

Previous approaches to predicting translational
success have primarily relied on citation patterns
and metadata features, or focused solely on se-
mantic analysis of research content (Nelson et al.,
2022; Padilla-Cabello et al., 2022). While these
methods have shown promise, they often over-
look the complex network of scientific knowledge
through which research findings propagate towards
clinical applications. Citation networks represent
more than just academic impact—they capture the
flow of knowledge from fundamental discoveries
towards clinical implementation. However, ef-
fectively modelling these knowledge transmission
pathways requires both understanding the seman-
tic content of research and its structural position
within the broader scientific landscape.

We address this challenge by introducing a
graph neural network architecture that integrates
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both semantic and structural information from
research publications. By analysing a compre-
hensive dataset of 19 million publications using
transformer-based embeddings within their citation
network context, our model captures subtle pat-
terns in how knowledge flows from basic science
towards clinical applications. Crucially, we demon-
strate that content-based features inherently encode
many signals predictive of translational potential,
allowing us to achieve state-of-the-art performance
while minimising reliance on potentially biased
metadata features. As a result, this approach of-
fers practical value in identifying promising transla-
tional research early, helping researchers, funders,
and institutions prioritise high-impact projects.

2 Related Work

Recent academic enquiry has focused on predict-
ing the relationship between a paper and its transla-
tional outcomes via citation analysis. Hutchins
et al. discovered a complex relationship be-
tween a paper’s content, its citing articles, and
citation rates, affecting its likelihood of being
cited in clinical articles (Hutchins et al., 2019b).
The study used human-annotated Medical Subject
Headings (MeSH) and 22 features in a random
forest model to predict translational success. The
model achieved good accuracy with just two years
of data, and the authors showed diminishing im-
provement when more years of data were added.
This is crucial because early identification facili-
tates translation prediction within the timeframe of
a grant.

The predictive power of MeSH tags is attributed
to its identification of the clinical stage a paper
lies (Hutchins et al., 2019b). The use of MeSH
terms, however, is limiting, as it requires extensive
human labelling. As an alternative, modern natu-
ral language processing methods can also identify
the translational stage of a paper (Li et al., 2023).
Full-MLP-CNN model predicted patent citations
(AUROC = 0.915) and guidelines and policy doc-
uments (AUROC = 0.918) without MeSH terms
(Nelson et al., 2022). This model used sentence em-
beddings of the title and abstract alongside exten-
sive metadata from the Microsoft Academic Graph
(MAG). This included Microsoft’s ranking features
based on eigencentrality. These features assess the
scientific network surrounding entities such as pa-
pers, journals, or authors, with the rank of the paper
emerging as the most influential metadata feature.
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The Full-MLP-CNN study did not address how
the age of the paper affects the accuracy of the
prediction. This is important as, when time lim-
ited, more complex network measures can perform
poorly compared to citation counts (Mariani et al.,
2016). However, Microsoft explicitly sought to mit-
igate this age bias in their entity centrality metrics
via reinforcement learning (Wang et al., 2019). In
fact, a time-balanced network centrality measure
has been shown to be more effective than simple
citation counts in identifying Nobel Prize winning
papers even in the first few years (Mariani et al.,
2016). This indicates that even a time-limited ci-
tation network structure contains valuable infor-
mation for translation prediction. The DELPHI
model is a clear example of this (Weis and Jacob-
son, 2021). It combined article and journal meta-
data alongside a time-limited citation network to
predict 5-year post-publication time-balanced net-
work centrality using only 2 years of data, while
identifying seminal biotechnology papers.

Nelson et al. found that removing citation meta-
data features had a moderate reduction in predictive
performance. This is supported by Li et al., who ex-
panded on the NIH study using a total of 91 citation
and MeSH based features to predict the clinical ci-
tation count of papers (Li et al., 2022). The authors
found the expanded citation network from paper
references were more influential than those of the
predicted paper or its early citations (Xin Li, Xuli
Tang and Qukai Cheng, 2022). Beinat et al. mean-
while, showed within the fields of dementia and
cancer, translation could be predicted without any
citation network data (Beinat et al., 2024). They
used an array of article metadata features alongside
title and abstract embeddings in a CatBoost model
to predict patent (AUROC = 0.84) and clinical trial
citations (AUROC = 0.81) for dementia research.

Removing citation features is attractive, as it al-
lows for translation prediction without any time
delay. However, models from Nelson et al., and
Beinat et al. use an array of researcher features
in their models, raising concerns about increased
model bias. While author popularity may relate
to past translational success, it is difficult to sepa-
rate this from potential structural biases when pre-
dicting future success. We argue that assessing a
paper’s translational potential should not consider
personal researchers attributes such as h-index, in-
stitution or country.

Evidence suggests that both paper content and a



time-limited scientific network structure around pa-
pers can be used to effectively predict biomedical
translation. However, no study to date has suc-
cessfully integrated both elements. Our graph neu-
ral network approach combines paper embeddings
alongside a time-limited scientific network struc-
ture to achieve this. The final model successfully
predicts translational impact without depending on
extensive feature engineering (MeSH), a now dis-
continued service (MAG), and minimises bias by
excluding sensitive author features.

3 Methodology

3.1 Data
3.1.1 Wellcome Academic Graph

Our dataset was extracted from our custom-built
graph database deployed on AWS Neptune, the
Wellcome Academic Gaph (WAG). WAG is a net-
work model of the academic landscape, with nodes
representing academic entities and edges repre-
senting interactions between these entities. It is
modeled on the retired Microsoft Academic Graph
(Sinha et al., 2015) and tailored to meet our or-
ganisation’s analysis requirements, including but
not limited to enhanced coverage of grant funding
data. WAG currently contains over 346 million aca-
demic entities (covering scientific publications dat-
ing back to the year 1665), connected by 2.9 billion
edges. The underlying source data are based on Di-
mensions (Digital Science) (Herzog et al., 2020), a
commercially available scientific research database
commonly used by research funders, which we
augmented with internal data. The latest version
of WAG includes an enrichment layer to add pre-
computed metrics and relationships to the graph.
Figure 1a shows part of the graph schema relevant
for GraphTranslate. Dimensions covers a wide
range of articles from open- and closed-access jour-
nals (Singh et al., 2021), as well as clinical trial
records from 15 registries (as of 2023) (Resources,
2018). Instead of citations from clinical trial publi-
cations, we use citations provided as part of these
clinical trial records as the target label to predict
translation.

3.1.2 Preprocessing

The data were filtered to include only publica-
tions related to medical science, as defined by the
ANZSRC Field of Research (FoR) codes from 2020
(of Statistics, 2020), which are provided as part of
the source data of the publication. The following
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Figure 1: Academic graph database schema and the
construction of publication node embeddings.
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Figure 3: Temporal diagram of translation prediction.

Division-level FoR codes were selected based on
our own exploratory analysis of publications histor-
ically cited by clinical trials: Biomedical and Clini-
cal Sciences (32), Health Sciences (42), and Psy-
chology (52). In addition, we limited our dataset
to research articles by filtering on article-type tags.
This was done to ensure that any performance met-
rics of the resulting models are both realistic (by
excluding articles which will conceivably never be
cited by a clinical trial) and indicative of transla-
tional potential of original research (by excluding
review articles, among others). The publications’
local citation network was extracted within a 2-
year time window used for graph modeling, a time
period previously identified as sufficient for pre-
dicting citation by a clinical article (Hutchins et al.,
2019b). As shown in Figure 2, this was done by
loading each year’s publication nodes together with
citations covering their respective 2-year time win-



dow as distinct sub-graphs.

3.1.3 Text Embeddings

Given our focus on semantic information as a key
node feature for prediction, we included only those
articles which had English language titles and ab-
stracts available. Non-English texts were filtered
out using the Google Compact shallow language
detector network (Google). Semantic node fea-
tures were created by converting titles and abstracts
to text embeddings using SciBERT, a language
model pre-trained on a multi-domain corpus of sci-
entific publications, released in 2019 (Beltagy et al.,
2019). Titles and abstracts were concatenated and
tokenized. To produce fixed-length embeddings,
longer texts were truncated while shorter texts were
padded to the maximum sequence length of 512
tokens. 768-dimensional representations of titles
and abstracts were produced by applying mean-
pooling to the token-level embeddings generated
by the model.

3.1.4 Graph Loader

We preprocessed the citation network by filtering
out publications that received no citations (approx-
imately 51% of the dataset) and those lacking re-
quired metadata fields. The final dataset was split
into training (80%), validation (10%), and test
(10%) sets for each year.

For training efficiency and to address class im-
balance (1.7% positive cases), we downsampled
the majority class in the training set to achieve a
1:1 ratio. The validation and test sets maintain their
original class distributions to reflect real-world con-
ditions. We implemented a custom PyTorch Ge-
ometric Datal.oader with a batch size of 256 to
handle the large-scale graph structure, using neigh-
bor sampling with a maximum of 500 nodes in the
first layer and 1000 nodes in the second to manage
memory constraints.

3.2 GNN Model
3.2.1

We implemented a binary node classifier using a
graph neural network (GNN) approach. GNNs
are typically built on the assumption that the in-
put graph is undirected. However, we hypothe-
sised that our citation network’s inherent direction-
ality carries predictive value indicative of transla-
tion. Specifically, we hypothesized that data from
publications cited by the article in question (i.e.,

Model architecture
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past publications) are less informative than the ci-
tations an article receives after its publication. To
leverage this directional information in our model,
we used a Directed Graph Neural Network (Dir-
GNN) architecture as first described by Rossi et
al. (Rossi et al., 2023). We considered 2-hop
citation neighborhoods when updating our node
features for translational prediction, implemented
using two graph convolutional layers for message
passing. We compared the following graph con-
volutional layers, which are available as part of
Pytorch Geometric: a simple graph convolutional
operator (GCNConv) (Kipf and Welling, 2017),
a GraphSAGE operator (SAGEConv) (Hamilton
et al., 2018), and a graph attentional operator (GAT-
Conv) (Velickovi¢ et al., 2018). We applied the
ReL.U activation function and dropout after each
convolutional layer. Our best performing model
was trained using two GATConv layers with 32
hidden dimensions. Furthermore, we implemented
jumping knowledge layer aggregation as part of
our GNN architecture, which was based on con-
catenation of the model’s hidden representations
(Xu et al., 2018). Finally, a linear output layer was
used to generate logits for binary classification.

3.2.2 Model training

Our GNN model was implemented in PyTorch Ge-
ometric. We used the Adam optimiser with a learn-
ing rate of le-3. Models were trained for 50 epochs
with early stopping based on validation loss with a
patience of 5 epochs. The hidden dimension was
set to 32 with 2 graph attention layers. Dropout of
0.2 was applied after each layer. Model training
was performed on a cloud compute instance with a
Nvidia A10G GPU. Hyperparameters were deter-
mined through systematic grid search optimisation.

4 Experiments

To evaluate the efficacy of our graph-based ap-
proach for predicting research translation into clin-
ical trials, we conducted four sets of experiments
designed to test key hypotheses about model per-
formance, feature importance, early detection ca-
pabilities and comparison to previous literature.

4.1 Graph Neural Networks vs. Linear
Baseline

Our first experiment compares the predictive per-
formance of our graph-based approach against a tra-
ditional linear baseline. Both models were trained



on identical datasets comprising academic publi-
cations and their associated clinical trial citations.
The baseline architecture consists of three linear
layers (64 units each) with dropout regularisation
(p=0.1). Our proposed graph model implemented
two Graph Attention layers (GATConv) with 32-
dimensional hidden representations and dropout
(p=0.2). For comprehensive evaluation, we con-
sidered both direct (publications cited by clinical
trial) and indirect (publications’ citation is cited
by clinical trial) connections between publications
and clinical trials in our network structure.

4.2 Publication Node Metadata

We evaluated model performance with different
types of metadata features: citation count, Field
of Research classifications (FoR), Research Ac-
tivity Classifications (RAC) (, UKCRC), journal
impact metrics, and historical clinical trial partici-
pation by any authors. FOR classifications provide
broad labeling of fields such as Biological Sciences
(top-level class) and Ecology (second-level class).
RAC classifications are specific to health-related
research with 48 distinct codes organised into eight
overarching groups. We obtained historic journal
metrics data from Scimago API for each publica-
tion (Scimago, 2024). Historic clinical trial par-
ticipation of an author required that any author be
previously associated with a publication directly
linked to a clinical trial (not cited). To manage high-
dimensional feature spaces (>32 dimensions), we
applied Principal Component Analysis (PCA) and
retain the top 32 principal components. These re-
duced metadata embeddings are concatenated with
the document text embeddings before being passed
through the network.

4.3 Early Detection Performance

To assess the model’s capability for early identifi-
cation of translational research potential, we eval-
uated direct translation prediction on recent publi-
cations in the inference time window (2021). This
experiment particularly focuses on the model’s abil-
ity to identify longer pathways of translational re-
search early on.

4.4 Evaluation

We evaluated the performance of our direct
model on NIH’s publicly available dataset: iCite
(Hutchins et al., 2019a). We removed the feature
which links authors to previous clinical trials and
retrained our model for inference on this dataset
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Table 1: Validation dataset performance comparison
between Linear Model and Graph Neural Network.

Model AUROC Recall Precision F1 AP

Dir. Linear Model 0.786 0.653 0.088 0.155  0.092
Dir. GNN 0.831 0.647 0.120 0203  0.132
Indir. Linear Model 0.783 0.390 0.675 0.494  0.532
Indir. GNN 0.818 0.647 0.618 0.632  0.596

using the same hyperparameters and early stopping.
After removing publications without any citations
or embeddings, there are a total of 5 million pub-
lications between 2003 and 2020. There is a 50%
translational rate in this dataset.

5 Results
5.1 Citations

Our dataset comprises 19 million publications and
127 million citation edges from 2003 to 2020
within the training window. Among these pub-
lications, 1.7% were identified as directly trans-
lational and 14.3% identified as indirectly transla-
tional. Analysis reveals average translation times of
6+4 years for a clinical trial citation. The inference
window (2021) contains 1.4 million publications,
with 0.6% identified as translational. Publications
are labeled as translational if they have been cited
by a clinical trial as of April 2024. Evaluation
of predictions using post-April 2024 clinical trial
citations are reported for the test performance.

5.2 Baseline Model Performance Comparison

Our graph neural network (GNN) architectures
demonstrate superior performance compared to
baseline linear models across both direct and indi-
rect translation prediction tasks. Both GNN mod-
els, which incorporate only embedding-based node
attributes, effectively capture not only the seman-
tic context of the target publication but also the
structural information from its citation neighbor-
hoods. This dual representation leads to improved
overall performance metrics, with the direct trans-
lation GNN achieving an F1 score improvement of
4.5 percentage points (0.155 vs 0.203) and average
precision increase of 4 percentage points. Simi-
larly, the indirect translation GNN demonstrates an
F1 score improvement of 12.8 percentage points
(0.494 vs 0.632) and average precision of 4% over
its linear counterpart.

5.3 Impact of Node Metadata Features

Analysis of different node metadata features reveals
varying contributions to model performance. Re-



Table 2: Validation dataset performance comparison for
metadata features.

Table 3: Test dataset performance for direct and indirect
metadata models.

Metadata AUROC Recall Precision F1 AP Model AUROC Recall Precision F1 AP
Embeddings 0.831 0.647  0.120 0203 0.132 Direct GNN 0.852 0.788 0.107 0.188  0.148
+Cite 0.846 0.751  0.105 0.184  0.132 Indirect GNN 0.815 0.551 0.662 0.601  0.551
+Cite+Journal 0.722 0337 0.136 0.194  0.072

+Cite+FOR 0.845 0.794  0.095 0.170  0.135

+Cite+RAC 0.831 0.685  0.130 0218  0.151 Procision-Recall Curves ROC Curves
+Cite+FOR+RAC 0.834 0772 0.110 0.192  0.144 — it =014 | 10

+Cite+Prev.Trial 0.855 0.802  0.101 0.179  0.138 -

+Cite+Prev.Trial+#FOR  0.855 0.797  0.100 0.178  0.137

+Cite+Prev.Trial+RAC  0.849 0.666  0.145 0239  0.161

search Activity Classification (RAC) codes provide
the strongest performance boost, increasing the av-
erage precision (AP) to 0.151. These codes, which
specifically categorise health and clinical research
domains, offer an additional health-oriented per-
spective for assessing translational potential. How-
ever, their impact is limited by sparse coverage,
with only 13% of publications having RAC annota-
tions.

Fields of Research (FOR) codes, despite their
broader coverage across the citation network
(>80%), do not significantly improve either F1 or
AP scores. Author-based features derived from
previous clinical trial associations demonstrate the
second-highest performance improvement (AP in-
crease of 0.138), representing the marginal in-
creased gain in scenarios where RAC codes are un-
available. Contrary to guideline/policy and patent
prediction (Nelson et al., 2022), the inclusion of
journal-based metrics (e.g., impact factor, citation
counts) degraded model performance, suggesting
that traditional bibliometric measures may not be
reliable indicators of translational potential.

5.4 Test Performance

The final direct and indirect models trained on the
embeddings, citation count and researcher linked
clinical trials were used to measure test perfor-
mance metrics as shown in Table 3, and precision-
recall and ROC curves, as shown in Figure 4. The
indirect model is able to substantially improve the
precision on the test dataset. This is owing to a
more balanced dataset with 14.3% of publications
being indirectly cited by a trial.

A closer inspection of the performance metrics
across the years show that the accuracy metrics are
non-stationary over time, with more recent years
suffering a degradation (see Appendix Figure 6).
This is most likely due to the recency of these pub-
lications and the limited time elapsed to complete
clinical trial citations compared to previous years.
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Figure 4: Precision-Recall and ROC curves for direct
and indirect test performance.

The assumption, therefore, is that a proportion of
the false positives are incorrectly labeled as such.
In order to validate this, we collected new Clinical
Trials (as at January 2025). Analysis of Clinical
Trials data post April 2024 reveals 5,421 new trials
linked to 48,021 historic publications. Of these
newly translated publications, 1,373 intersect with
our test set. When accounting for these recent trials,
0.5% of all test publications were initially misla-
beled as false positives. The updated precision
scores per year are shown in Appendix Figure 7,
with more recent years having a greater proportion
of incorrectly labeled false positives. This indi-
cates our model’s ability to identify publications
with future translational potential.

Appendix Figure 8 demonstrates varying perfor-
mance for different fields of research. For health
sub-domains: neuroscience, reproductive medicine,
health and clinical sciences have the highest pre-
cision scores (above the global average). These
fields represent scientific domains which may often
include animal or human participants, positioning
them closer to translational outcomes. On the other
hand, the health fields with lower precision include
biological sciences, medical biotechnology, engi-
neering and microbiology. While a proportion of
this can be attributed to longer translation pathways,
certain fields continue to demonstrate increased
performance pre-2010 (see Appendix Figure 9 -
clinical sciences increases by 4 percentage points
compared to biological sciences which increased
by 1 percentage point). This indicates that the
model is better at identifying translation in certain
biomedical domains using the publication text and
network neighbourhood.



Table 4: Inference performance for direct model.

AP
0.080

Model
Direct GNN

AUROC
0.728

Recall
0.327

F1
0.191

Precision
0.135

5.5 Early Detection Performance

Recall that on average it takes approximately 6
years to obtain a citation from a clinical trial (based
on the Wellcome Academic Graph data). Since
the inference time window includes publications
from 2021, publications have accrued only 3.25 of
post-publication citations, resulting in incomplete
ground labels, as indicated by a low citation rate
in the inference time window (0.6% versus 1.7%).
This results in a degradation of the model recall as
shown in Table 4. We would expect these results to
be recovered once a more complete time window
has elapsed.

The translation model predicts the field of im-
munology to have the greatest number of transla-
tional publications in 2021. This is followed by
epidemiology and medical microbiology. These
are predicted to translate at a rate of close to 4%.
However, the precision score is likely to reduce
that rate by a factor of 10 for true translation pro-
portion. These fields reflect the translational con-
tribution towards understanding Covid-19 during
the pandemic (in the test dataset immunology had
a translation rate of 2%).

We updated Clinical Trial citations by import-
ing data after April 2024 up until January 2025.
This led to incorrect false positives for the infer-
ence time window to have a 1.4% error rate. The
correctly predicted publications have a very high
median citation count (median > 100), indicative of
high impact translational research (see Appendix
Figure 11). In contrast the set of false negatives
have a much lower citation count (median = 10).
The Research Activity Codes (RAC) associated
with higher proportion of false negatives (see Ap-
pendix Figure 12) include individual care needs,
organisation and delivery of services and primary
prevention interventions to modify behaviours or
promote wellbeing. These fields represent research
close to translational science, and as shown by (Li
et al., 2024), can have a low number of overall non-
clinical citations. Lower citation count is not only
a feature used for prediction, but also reduces the
aggregated network neighbourhood effects for the
GNN model prediction.
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Table 5: Inference performance for NIH iCite dataset.

Source AUROC  Accuracy F1
Direct GNN 0.85 0.78 0.64
NIH RF (Hutchins et al., 2019b) 0.80 0.84 0.56

5.6

Table 5 shows the performance of our model on the
sampled iCite dataset. For completeness, we also
show the reported results from the original model
which incorporated MeSH categories of the orig-
inal publication and its’ first-order citations. The
original publication reports a translation rate of
30% compared to our 50% (Hutchins et al., 2019b).
This is most likely due to the time frame: the au-
thors use publications from 1994 - 2014. Our
model outperforms the NIH model on the iCite
dataset using only embedding and citation count
as features. This demonstrates the ability of title
and abstract embeddings to encode information on
a meaningful scale for understanding clinical trial
translation. Since our model does not need any
research codes such as MeSH, it can be applied to
a broader set of research publications outside of the
PubMeD archive.

iCite Evaluation

5.7 Discussion

Our work presents the first application of graph
neural networks to model research translation by
incorporating local citation network structures. Fol-
lowing (Hutchins et al., 2019b), we use a two-
year post-publication citation window, optimising
for early detection while maintaining predictive
power. However, our approach differs significantly
in dataset scope - while their study focused exclu-
sively on PubMed-indexed publications, we anal-
yse a broader spectrum of biological and health



sciences research, resulting in a more realistic but
challenging 1.7% translation rate. This wider scope
leads to lower F1 scores (0.19 versus 0.56), re-
flecting the inherent difficulty of prediction in a
more imbalanced, real-world setting. We find that
our model outperforms the model from NIH when
predicting on the NIH-iCite dataset leading to in-
creased AUC and F1 scores (0.64 versus 0.56 and
0.85 versus 0.80).

Our results demonstrate that graph neural net-
works, particularly through attention mechanisms,
more effectively capture translation patterns com-
pared to linear combinations of node, MeSH and
citation features. The inclusion of Research Activ-
ity Classification (RAC) codes provides the highest
performance boost, potentially serving a similar
role to the MeSH-based features in Hutchins et al.
(Hutchins et al., 2019b). However, the marginal
improvement from RAC codes suggests our node
embeddings already encode much of this informa-
tion. Additionally, MeSH terms only cover a subset
of publications (associated with PubMeD), there-
fore an embedding based approach to quantifying
research content allows for greater generalisabil-
ity. Notably, contrary to Nelson et al. (Nelson
et al., 2022), we found no performance improve-
ment from journal metrics, though this may reflect
our focus on clinical trials rather than guidelines
and policy citations.

In an early prediction time window, our model
maintains precision capabilities while experienc-
ing expected recall reduction due to the time lag
between publication and clinical trial citation. Cor-
rect predictions correlate with early citation im-
pact, while false positives concentrate in fields
with typically longer translation pathways, such
as biological mechanisms and oncology research.
This pattern suggests our model effectively cap-
tures domain-specific translation dynamics.

In future work, a time-normalised PageRank
measurement could improve model performance
without relying directly on citations. Unlike (Nel-
son et al., 2022), we deliberately excluded po-
tentially biased features such as researcher demo-
graphic or impact scores to avoid potential bias
from academics with a longer career history or
from certain well funded-geographies. Model per-
formance might be further improved by incorporat-
ing local citation networks (references) to provide
additional insights into knowledge flow patterns,
an approach that has shown promise in predicting
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clinical citation patterns (Li et al., 2022).

Limitations

Our study has several important limitations that
should be considered when interpreting results and
applying the model:

Temporal Constraints

The model requires at least 2 years of citation data
post-publication to make reliable predictions. This
creates an inherent delay in assessment capabili-
ties, limiting its use for real-time funding decisions.
Since research grants themselves require time to
produce outputs, funders would need to wait a min-
imum of 2 years from grant award date to assess
translation potential. Consequently, this approach
is more suitable for retrospective analysis of re-
search portfolios where manual labeling would be
impractical or unfeasible.

Limited Translation Outcomes

Our current implementation defines translation nar-
rowly through citation in clinical trials. This def-
inition excludes other important translation path-
ways such as patents, policy documents, clinical
guidelines, commercial products, and public health
interventions. In addition, it does not differenti-
ate between phases of Clinical Trials. A more
comprehensive model would incorporate these di-
verse translation outcomes to better reflect the mul-
tifaceted nature of research impact beyond the clin-
ical trial pathway.

Interpretability Challenges

The complex interactions captured by graph neu-
ral networks limit straightforward interpretation of
why specific research is predicted to translate. This
"black box" aspect may limit acceptance by fund-
ing bodies or policymakers who require transparent
decision-making rationale.
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A Appendix

Precision, Recall, and F1 Score by Year
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Figure 6: Test set performance metrics for direct clinical
trial translation prediction.
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Figure 7: Test set precision metrics including updated
metrics for newly translated publications.
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Figure 8: Test set precision metrics for most commonly
appearing fields of research (total test set counts shown
in brackets).
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Figure 9: Test set precision metrics for most commonly
appearing fields of research (pre-2010 only).
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Figure 10: Test set precision metrics highest performing
fields (total positive number of publicatoins shown in
brackets).
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Figure 11: Distribution of citation count in training (left)
and inference time window.
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Figure 12: Citation count distribution in each inference
prediction class.
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Figure 13: Proportion of RAC research fields in each
inference prediction class.
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