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Abstract

Misinformation on social media poses signif-
icant risks, particularly when it concerns crit-
ical scientific issues such as climate change.
One promising direction for mitigation is the
development of automated fact-checking sys-
tems that verify claims against authoritative
scientific sources. In this work, we present
our solution1 to the ClimateCheck2025 shared
task, which involves retrieving and classifying
scientific abstracts as evidence for or against
given claims. Our system is built around a
multi-stage hybrid retrieval pipeline that inte-
grates lexical, sparse neural, and dense neu-
ral retrievers, followed by cross-encoder and
large language model (LLM)-based reranking
stages. For stance classification, we employ
prompting strategies with LLMs to determine
whether a retrieved abstract supports, refutes,
or provides no evidence for a given claim. Our
approach achieves the second-highest overall
score across both subtasks of the benchmark
and significantly surpasses the final baseline by
53.76% on Subtask I score (defined as an av-
erage across Recall@2, Recall@5, Recall@10,
and B-Pref). Notably, we achieve state-of-the-
art performance in Recall@2. These results
highlight the effectiveness of combining struc-
tured retrieval architectures with the emergent
reasoning capabilities of LLMs for scientific
fact verification, especially in domains where
reliable human annotation is scarce and timely
intervention is essential.

1 Introduction

The rapid proliferation of online misinformation,
particularly in scientific, health, and policy con-
texts, has intensified the demand for reliable auto-
mated fact-checking systems (Li and Chang, 2022;
Schlicht et al., 2023). These systems aim to as-
sess the veracity of natural language claims by
retrieving and evaluating relevant evidence from

1https://github.com/annamkiepura/ClimateCheck

large text corpora. This process hinges on two
core challenges: (1) retrieving relevant information
from vast knowledge sources, and (2) determining
whether the retrieved content supports, refutes, or
fails to inform the claim.

Traditional keyword-based retrieval methods of-
ten struggle with these tasks, especially in domains
requiring deep semantic understanding or domain-
specific reasoning (Urbani et al., 2024; Devasier
et al., 2025). Recent advances in neural retrievers
and large language models (LLMs) have improved
retrieval and reasoning capabilities across diverse
topics (Vykopal et al., 2024; Quelle and Bovet,
2024; Ou et al., 2025). Nonetheless, integrating
high-recall retrieval with robust, claim-sensitive
reasoning remains a key bottleneck - particularly in
scientific domains, where evidence is often sparse,
nuanced, and hedged (Hyland, 1996).

In this paper, we present our system for the Cli-
mateCheck2025 shared task (Abu Ahmad et al.,
2025b), which consists of two subtasks: (1)
for each climate-related claim extracted from so-
cial media, retrieve the top-10 most relevant ab-
stracts from a corpus of nearly 400,000 scien-
tific abstracts, and (2) classify each claim-abstract
pair as SUPPORTS, REFUTES, or NOT ENOUGH
INFORMATION (NEI).

Our retrieval pipeline (Subtask 1) is a three-
stage architecture. First, we combine BM25
(Robertson and Zaragoza, 2009), a fine-tuned dense
retriever, and a sparse neural retriever using Recip-
rocal Rank Fusion (RRF) (Cormack et al., 2009).
Second, we train a cross-encoder reranker with
a two-phase hard negative mining strategy, lever-
aging both model uncertainty and relevance judg-
ments. Finally, we apply an adapted RankGPT
(Sun et al., 2023), prompting an LLM in a few-
shot setting to rerank the top candidates using
permutation-based generation informed by cross-
encoder scores.

For evidence classification (Subtask 2), we eval-
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uate zero- and few-shot LLM prompting, and fine-
tune transformer-based models for multi-class clas-
sification of claim-abstract pairs.

Our key contributions are:

• We propose a hybrid multi-stage retrieval
framework, incorporating LLM-based per-
mutation generation for reranking, to en-
hance retrieval effectiveness for automated
fact-checking.

• We conduct an evaluation of evidence classi-
fication approaches, comparing LLMs under
various prompting paradigms against super-
vised BERT-based classifiers.

• Our system achieves the second-highest per-
formance across both subtasks of the Climat-
eCheck2025 benchmark, surpassing the of-
ficial baseline by 53.76% on average across
Recall@2, Recall@5, Recall@10, and B-pref.

• We set a new state-of-the-art on the Climate-
Check2025 benchmark in terms of Recall@2.

2 Related Work

Automated fact-checking aims to assess the ve-
racity of claims using evidence, a task tradition-
ally performed by human experts but increasingly
addressed with automated methods due to scala-
bility concerns (Nakov et al., 2021). Numerous
datasets have been developed to support this re-
search. General-domain resources include FEVER
(Wikipedia-based claims) (Thorne et al., 2018),
VitaminC (contrastive evidence) (Schuster et al.,
2021), LIAR (Wang, 2017), and MultiFC (real-
world political/media claims) (Augenstein et al.,
2019a). MuMiN further expands this scope to mul-
tilingual, multimodal misinformation on social me-
dia (Nielsen and McConville, 2022).

Scientific fact-checking, a more specialized sub-
field, introduces challenges such as complex lan-
guage, evolving knowledge, and domain-specific
reasoning. Key datasets include SciFact (Wad-
den et al., 2020) (scientific claims and abstracts),
HealthVer (Sarrouti et al., 2021) and COVID-Fact
(Saakyan et al., 2021) (biomedical), and Climat-
eViz (climate science) (Su et al., 2025). These
corpora underscore the risks of domain-specific
misinformation, from harmful medical decisions
(Wang et al., 2019) to distorted climate discourse
(van der Linden et al., 2017).

The fact-checking process is typically modeled
as a pipeline: (1) claim detection (Panchendrarajan
and Zubiaga, 2024), (2) check worthiness estima-
tion (Yu et al., 2025), (3) document retrieval (Dey
et al., 2025), (4) claim verification via natural lan-
guage inference (NLI) (Dammu et al., 2024). Some
systems also generate explanations, though these
face challenges with hallucination (Atanasova et al.,
2020). Our work focuses on document retrieval and
claim verification.

For retrieval, sparse methods such as BM25
use lexical matching, while dense methods, such
as Dense Passage Retrieval (Karpukhin et al.,
2020), leverage neural encoders for semantic sim-
ilarity. Hybrid systems combining both have
shown improved performance (Zhang et al., 2024),
and retrieval-augmented generation (RAG) mod-
els further integrate retrieval with generation for
grounded responses (Khaliq et al., 2024).

Claim verification is often framed as an entail-
ment task, with transformer-based models, such as
BERT (Devlin et al., 2019), fine-tuned to classify
claim-evidence pairs as support, refute, or neutral
(Wadden et al., 2022). Prompt-based methods us-
ing LLMs offer zero-shot alternatives, though per-
formance varies across models and prompt designs
(Chen et al., 2024a).

Despite advances, scientific fact-checking re-
mains challenging due to long-context reasoning,
subtle hedging, contradictory evidence, and the
need for up-to-date knowledge. LLMs have shown
promise as rerankers or classifiers, but often lag
behind supervised models in consistency and inter-
pretability (Ghosh et al., 2025). In this work, we
investigate how traditional retrieval methods can be
effectively integrated with LLMs to leverage their
complementary strengths.

3 Dataset

The ClimateCheck dataset (Abu Ahmad et al.,
2025a) was prepared by the task’s organizers
and comprises (i) claims sourced from Clima-
Convo (Shiwakoti et al., 2024), DEBAGREE-
MENT (Pougué-Biyong et al., 2021), Climate-
Fever (Diggelmann et al., 2021), MultiFC (Au-
genstein et al., 2019b), and ClimateFeedback2, in-
cluding both real and synthetically generated so-
cial media-style content, (ii) a corpus of scien-
tific abstracts from OpenAlex3 and S2ORC (Lo

2https://science.feedback.org/process/
3https://openalex.org/
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et al., 2020), and (iii) annotated claim-abstract pairs
labeled as SUPPORTS, REFUTES, or NOT ENOUGH
INFORMATION (NEI). Annotations were produced
via TREC-style pooling and reviewed by graduate-
level domain experts. Key dataset statistics are
summarized in Table 1.

Statistic Value

Abstract Corpus

Total # of abstracts 394,269
Mean length (words) 240.93
Min length (words) 1
Max length (words) 6,818
Std dev. of length 232.46

Claims (Train Split)

Total # of unique claims 252
Mean length (words) 17.76
Min length (words) 3
Max length (words) 43
Std dev. of length 7.50

Claim-Abstract Pairs

Total # of labeled claim-abstract pairs 1,144
SUPPORT instances 446 (38.99%)
REFUTES instances 241 (21.07%)
NEI instances 457 (39.95%)
Positive instances (SUPPORT + REFUTES) 687 (60.05%)

Relevant Abstracts per Claim

Mean # of relevant abstracts/claim 2.73
Min # of relevant abstracts/claim 0
Max # of relevant abstracts/claim 5
Std dev. of the # of relevant
abstracts/claim

1.68

Claim Relevance Distribution

# of claims with ≥1 supporting abstract 150
# of claims ≥1 refuting abstract 101
# of claims with only NEI abstracts 27

Table 1: ClimateCheck dataset statistics.

4 Methodology

Below, we describe our multi-stage pipeline for
scientific fact-checking, summarized in Figure 1,
and our technical implementation details.

4.1 Subtask 1: Abstract Retrieval

Our approach to Subtask 1 adopts a retrieve-then-
rerank paradigm, inspired by prior multi-stage
retrieval systems such as HLART (Zhang et al.,
2022), Re2G (Glass et al., 2022), and MST-R
(Malviya et al., 2024). In Stage 1, we employ
a hybrid retrieval setup that combines lexical and
neural methods, leveraging their complementary

Figure 1: Overview of our fact-checking pipeline. A
given claim is matched against an abstract corpus using
a hybrid retrieval system (Stage 1) composed of BM25,
dense, and sparse retrievers, fused via Reciprocal Rank
Fusion (RRF). Top-ranked abstracts are reranked using
a cross-encoder (Stage 2), followed by a few-shot LLM-
based reranker (Stage 3). The final top 10 abstracts are
passed to a classification stage (Stage 4), where each
claim-abstract pair is labeled as SUPPORTS, REFUTES, or
NEI using either a fine-tuned classifier or a zero-shot
LLM.
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strengths: lexical models excel at exact-match pre-
cision, while neural models capture semantic simi-
larity. This integration improves overall recall and
yields a more diverse set of candidate abstracts, in-
creasing the chances of retrieving relevant evidence
that might be overlooked by any single method.
Since the combined results originate from heteroge-
neous retrieval models with non-comparable scor-
ing functions, Stages 2 and 3 introduce rerankers
to normalize and refine the candidate list, enabling
coherent and consistent ranking across sources.

4.1.1 Stage 1 - Hybrid Retrieval System
Dense Neural Retriever We fine-tune the BGE-
M3 dense retriever model (Chen et al., 2024b) us-
ing a triplet loss objective with cosine distance and
a margin of 0.3. Each training instance is a triplet
consisting of an anchor (the claim), a positive ab-
stract (labeled as SUPPORTS or REFUTES), and a
negative abstract (labeled as NEI). The training ob-
jective encourages the model to embed the claim
closer to the positive abstract than to the negative
by a fixed margin in cosine space. Formally, the
loss is defined as:

Ltriplet = max
(
0, cos(q,d−)− cos(q,d+) + γ

)

(1)
where q is the embedding of the claim, d+ is the

embedding of the positive abstract, d− is the em-
bedding of the negative abstract, cos(·, ·) denotes
cosine similarity, and γ = 0.3 is the margin.

The model is fine-tuned for 3 epochs with a learn-
ing rate of 5 × 10−5, using a warm-up schedule
over the first 10% of training steps. All layers are
updated during training, and mixed-precision com-
putation is employed to improve training efficiency.
We use a per-device batch size of 2 with gradient
accumulation over 32 steps, yielding an effective
batch size of 64. Fine-tuning enables the model to
better adapt to the scientific domain and capture
semantic relationships between claims and eviden-
tiary abstracts more effectively.

After fine-tuning, we precompute dense embed-
dings for all abstracts in the corpus. At inference
time, an input claim is encoded into a dense vec-
tor, and similarity scores are computed via the dot
product between the claim vector and each abstract
embedding. These scores are then used to directly
rank the abstracts by relevance.

Sparse Lexical Retriever BM25 is a sparse lexi-
cal retriever model based on TF-IDF (Jones, 1972).
We build a BM25 index over all corpus abstracts

and use it to retrieve most relevant candidates by
computing relevance scores between the tokenized
claim and each abstract.

Sparse Neural Retriever We utilize a sparse
neural retriever based on the pretrained SPLADE-
v3 model (Lassance et al., 2024), which encodes
queries into high-dimensional sparse vectors by
applying a ReLU-activated max pooling over con-
textualized token logits. Specifically, given contex-
tualized logits L ∈ RT×V for a query of length T
and vocabulary size V , the sparse representation
q ∈ RV is computed as:

qv = max
t=1,...,T

ReLU(Lt,v) (2)

This allows SPLADE to retain the efficiency of in-
verted index retrieval while incorporating semantic
signals from deep transformer architecture. For
each input claim, we compute a sparse claim rep-
resentation and perform retrieval via a sparse dot
product against precomputed document vectors of
all abstracts.

RRF We combine the ranked outputs of BM25
(Robertson and Zaragoza, 2009), dense, and sparse
neural retrievers using Reciprocal Rank Fusion
(RRF), a method introduced by Cormack et al.
(2009). In RRF, given the rank ri(d) of document
d from retriever i, the final score is computed as:

S(d) =

n∑

i=1

1

krrf + ri(d)
(3)

where krrf is a fixed hyperparameter that we set to
60, following the recommendation in Yang et al.
(2017). RRF enables effective aggregation of re-
trieval results from heterogeneous models with non-
comparable scoring scales. We apply this hybrid
retrieval strategy to select the top-600 candidate
abstracts for each claim (see Appendix B for dis-
cussion of the top-k choice).

4.1.2 Stage 2 - Cross-Encoder Reranker

At the first reranking stage, we use a cross-encoder
model ms-marco-MiniLM-L-6-v2 (Reimers and
Gurevych, 2021; Bajaj et al., 2018) trained on the
MSMARCO dataset (Wang et al., 2020). Unlike bi-
encoders used in Stage 1, the cross-encoder jointly
encodes the claim and abstract, allowing for richer
interaction and more accurate relevance estimation.

296



Fine-tuning We fine-tune the cross-encoder
reranker in two phases using the ClimateCheck
annotated dataset, following a curriculum-based
learning strategy (Bengio et al., 2009). In the first
phase, training examples are constructed by retriev-
ing the top-k candidates (k=200) using the hybrid
retrieval system. All truly relevant abstracts (la-
beled as SUPPORTS or REFUTES in the ground truth)
are treated as positive examples. Hard negatives are
selected from top-ranked abstracts that are labeled
as NEI, while easy negatives are randomly sampled
from the remaining NEI abstracts. In the second
phase, we use the model trained in the first phase
to re-mine more challenging hard negatives. The
reranker is then further fine-tuned on this harder
set, enabling progressive refinement of its discrimi-
nation ability.

We train the model using binary cross-entropy
loss, inferred from the scalar output with sigmoid
activation and threshold-based label prediction. We
use a batch size of 16, a learning rate of 2× 10−5,
and weight decay of 0.01. Phase 1 includes 3
epochs, followed by 2 additional epochs in phase
2. All experiments are conducted with mixed pre-
cision (FP16) (Micikevicius et al., 2018) training
enabled for improved efficiency.

Inference At inference time, we retrieve the top-
k = 600 candidate abstracts for each test claim
using the hybrid retrieval system. The choice of
the top-k parameter value used in Stage 1 is further
discussed in Appendix B. These candidates are
then reranked using the fine-tuned cross-encoder,
and the top-k = 20 are then passed to the Stage 3
reranker. Different numbers of candidates passed
on to the Stage 3 reranker were not evaluated due
to limited resources.

4.1.3 Stage 3 - LLM-based Reranker
The third stage of our pipeline applies an
instruction-tuned LLM to rerank the top 20 ab-
stracts produced by the cross-encoder. We use
RankGPT (Sun et al., 2023) adapted from the offi-
cial implementation4, which formulates reranking
as a permutation generation task. Rather than as-
signing independent relevance scores (pointwise)
or comparing abstract pairs in isolation (pairwise),
the model reasons over the entire candidate set
holistically and outputs a single ranked list. Given
a claim and 20 candidate abstracts, the LLM is
prompted in a few-shot setting to generate a per-

4https://github.com/sunnweiwei/RankGPT

mutation π ∈ SN , where π(i) denotes the rank
assigned to the i-th abstract. The model is ex-
plicitly instructed to order the abstracts from most
to least evidentiary, regardless of stance polarity
(SUPPORTS or REFUTES). This enables the LLM to
model complex interdependencies such as redun-
dancy, diversity, and relative informativeness - ca-
pabilities not easily captured by pointwise or pair-
wise architectures. The resulting LLM-based ranks
are converted into normalized scores using:

LLMnorm(di) = 1− π(i)− 1

N − 1
(4)

where N is the number of candidates to rerank
and a higher score corresponds to a more eviden-
tiary abstract.

To integrate the LLM’s global reasoning with
the semantic precision of the cross-encoder, we
compute a fused score for each document as:

scorefused(di) = α · CEnorm(di)

+(1− α) · LLMnorm(di)
(5)

where the α parameter balances the contri-
butions of the normalized cross-encoder score
CEnorm(di) and the normalized LLM-based score
LLMnorm(di). We used α = 0.4 as it yielded the
best performance. Full ablation results of the value
of the α parameter are available in Appendix A.
The top 10 abstracts based on the fused scores are
then selected as the final ranked evidence set for
each claim.

As the LLM, we used GPT-4.15 through OpenAI
API, with temperature set to 0. Prompting details
and the comparison between the zero- and few-shot
settings are included in Appendix A.

4.1.4 Retrieval evaluation metrics
We evaluate retrieval performance using several
standard metrics: Recall@2, Recall@5, and Re-
call@10 measure the proportion of relevant ab-
stracts retrieved in the top 2, 5, and 10 positions,
respectively. B-Pref (Binary Preference) (Buckley
and Voorhees, 2004) quantifies how many relevant
items are ranked ahead of non-relevant ones, ac-
counting for incomplete relevance judgments. We
also report a composite Retrieval Score, computed
as the arithmetic mean of the four preceding met-
rics.

5https://https://openai.com/index/gpt-4-1/

297

https://github.com/sunnweiwei/RankGPT
https://https://openai.com/index/gpt-4-1/


4.2 Subtask 2: Stance Classification

To classify the stance of retrieved abstracts
(SUPPORTS, REFUTES, or NEI) with respect to the
retrieved claims, we explore two approaches: (a)
using LLMs in various prompting settings, and (b)
training supervised classifiers based on DeBERTa
(He et al., 2021) and RoBERTa (Liu et al., 2019),
using human-annotated examples in the Climate-
Check dataset.

4.2.1 LLM
We experiment with prompting LLMs to classify
claim-abstract pairs using both zero-shot and few-
shot settings. In the zero-shot setup, the model
is directly instructed to assign labels, without
any examples provided. In the few-shot variant,
we provide examples of annotated pairs to guide
the model’s reasoning. Additionally, we investi-
gate a two-step classification approach: first, the
model predicts whether a given abstract is evi-
dentiary (i.e., SUPPORTS or REFUTES) versus non-
evidentiary (NEI); second, only for the evidentiary
stances, a separate model instance predicts the po-
larity (SUPPORTS vs REFUTES). In the one-step ap-
proach, the model is directly prompted to assign
one of the three possible labels. In the hybrid ap-
proach, a single model instance is instructed to
first predict the relevance (evidentiary vs. non-
evidentiary), and then the polarity. Full details
regarding prompting are available in Appendix C.
As the LLM, we used GPT-4.16 through OpenAI
API, with temperature set to 0.

4.2.2 Supervised fine-tuning
We fine-tune three models, initializing from
the following checkpoints: DeBERTa-v3-base-
mnli7, which was trained on the MultiNLI dataset
(Williams et al., 2018) consisting of 392,702
NLI hypothesis-premise pairs, DeBERTa-v3-base-
scifact8 and RoBERTa-large-scifact9, both fine-
tuned on the SciFact dataset.

The human-labeled instances were stratified
90/10 into training and validation splits. We freeze
the encoder layers, so that only the pooler and clas-
sifier layers are updated. To mitigate the mild class
imbalance, we employ a custom Trainer that (i)

6https://https://openai.com/index/gpt-4-1/
7https://huggingface.co/MoritzLaurer/

DeBERTa-v3-base-mnli
8https://huggingface.co/jedick/

DeBERTa-v3-base-mnli-fever-anli-scifact-citint
9https://huggingface.co/nikolamilosevic/

SCIFACT_xlm_roberta_large

inserts a WeightedRandomSampler so each mini-
batch is class-balanced and (ii) replaces the stan-
dard cross-entropy with a class-weighted focal loss:

Lfocal = −αy

(
1− py

)γ
log py (6)

where py is the softmax probability of the gold
label y, αy = 1/fy is the inverse class frequency
(normalized so

∑
c αc = C), and γ = 2 focuses the

gradient on hard or minority examples. Training
runs for 10 epochs with an effective batch of 32
and a flat learning rate 5× 10−5.

4.2.3 Classification evaluation metrics
We report weighted-averaged precision (P), recall
(R), and F1-score, which compute metrics for each
class and average them according to the number
of true instances for the SUPPORTS, REFUTES, and
NEI labels. This approach accounts for class imbal-
ance while providing a comprehensive measure of
overall system performance.

4.3 Hardware details
All fine-tuning and inference experiments were car-
ried out on the A100 40 GB RAM NVIDIA GPU.

5 Results and Discussion

5.1 Subtask 1: Abstract Retrieval

Alg. R@2 R@5 R@10 B-Pref R. Score

B+S+D 0.1447 0.2693 0.3840 0.3102 0.2771
B+S+D+C 0.1882 0.3884 0.5643 0.4270 0.3920
B+S+D+C+L 0.2309 0.4413 0.6006 0.4818 0.4386

Final baseline 0.1947 0.3047 0.3436 0.2980 0.2853

Table 2: Retrieval results (B=BM25, S=SPLADE,
D=Dense, C=Cross-encoder, L=LLM) across retrieval
system variants on test dataset. Final baseline refers to
the baseline results provided by the task’s organizers.
Full ablation available in Appendix A.

Retrieval results are shown in Table 2. The initial
hybrid retriever, which combines lexical (BM25),
sparse neural (SPLADE), and dense (BGE-M3)
retrieval methods, achieves a Recall@10 of 0.3840
and a retrieval score of 0.2771. While this baseline
benefits from diverse retrieval signals, its ability to
rank truly relevant evidence is still limited by the
heterogeneous scoring outputs and lack of deeper
semantic matching.

Introducing the cross-encoder reranker
(B+S+D+C) yields substantial gains across all
evaluation metrics. Notably, Recall@10 increases
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by over 47% (from 0.3840 to 0.5643), while B-Pref
improves from 0.3102 to 0.4270. This confirms
the effectiveness of cross-encoders in modeling
fine-grained semantic relationships between claims
and abstracts, particularly in reordering high-recall
but noisy candidate sets.

The full pipeline (B+S+D+C+L), which inte-
grates an LLM-based permutation reranker as a
final stage, achieves the strongest performance
across all metrics. It reaches a Recall@10 of
0.6006 and a B-Pref of 0.4818, corresponding to a
final retrieval score of 0.4386. This indicates that
the LLM-based reranker provides complementary
refinement, likely capturing subtle discourse cues
and context-aware relevance signals missed by ear-
lier stages. Improvements are consistent not only in
recall-based metrics but also in B-Pref, suggesting
that the model is not just retrieving more relevant
documents, but also ranking them more coherently
with respect to ground truth preferences. Overall,
our approach yields an improvement of 53.76% in
Retrieval Score over the final baseline published by
the shared task’s organizers10.

5.2 Subtask 2: Stance Classification

Version P R F1

LLM prompting

Few-shots-hybrid 0.6811 0.6835 0.6811
Zero-shot-hybrid 0.6950 0.6973 0.6957
Zero-shot-two-step 0.6780 0.6835 0.6788
Zero-shot-one-step 0.6874 0.6909 0.6842

Supervised fine-tuning

DeBERTa-v3-base-mnli 0.5468 0.5348 0.5176
DeBERTa-v3-base-scifact 0.5774 0.5285 0.5365
RoBERTa-large-scifact 0.5637 0.5032 0.5098

Final baseline 0.65448 0.62603 0.63148

Table 3: Classification performance across LLM
prompting and supervised fine-tuning strategies on the
test dataset. Final baseline refers to the baseline results
provided by the task’s organizers.

Classification results are summarized in Ta-
ble 3. Among LLM-based strategies, the zero-shot
hybrid prompt achieves the highest F1 score of
0.6957, slightly outperforming the few-shot variant
(0.6811) and both the one-step and two-step zero-
shot setups. This suggests that carefully crafted
zero-shot prompts can be as effective - or even

10The percentage change is calculated as
(
0.4386−0.2853

0.2853

)
×

100% =
(
0.1533
0.2853

)
× 100% = 0.5373× 100% = 53.73%.

more so - than few-shot examples, likely due to re-
duced prompt length and reduced token-level noise
from poorly aligned demonstrations.

The hybrid prompting format, which combines
structured instruction with explicit claim-evidence
formatting, proves consistently effective across se-
tups. Compared to the two-step approach, where
the stance is inferred via intermediate entailment,
the one-step and hybrid strategies demonstrate bet-
ter alignment with the task’s categorical stance la-
bels, yielding higher precision and recall. This
suggests that direct classification is more robust for
LLMs than compositional reasoning pipelines in
this context.

Notably, all LLM-based approaches outperform
the supervised baselines. The best supervised
model (DeBERTa-v3-base fine-tuned on SciFact)
achieves an F1 score of 0.5365 - substantially
lower than any LLM-based method. This perfor-
mance gap highlights the limitations of traditional
fine-tuning approaches, even when trained on in-
domain annotations, and underscores the strength
of instruction-tuned LLMs in performing complex
stance classification in few- or zero-shot settings.

6 Conclusion

Scientific fact verification poses unique challenges
due to complex domain language and the need for
precise evidence interpretation. In this work, we
introduced a multi-stage retrieval and classification
pipeline tailored to these challenges, integrating
hybrid retrieval methods, cross-encoder reranking,
and LLM-based reasoning modules.

Our experiments on the ClimateCheck bench-
mark demonstrate consistent improvements across
all retrieval metrics, with each additional compo-
nent - especially LLM-based reranking - contribut-
ing meaningfully to performance. In the classifica-
tion subtask, prompting strategies based on LLMs
outperformed traditional fine-tuned models, even
when the latter were trained on task-specific human
annotations. These findings highlight the flexibility
and effectiveness of instruction-tuned LLMs for
complex scientific reasoning tasks, especially in
data-scarce or rapidly evolving domains.

Overall, our work underscores the importance
of combining structured retrieval pipelines with
the emergent reasoning abilities of LLMs. Fu-
ture work could explore more tightly integrated
retrieval-generation models, few-shot active learn-
ing for stance classification, and methods for im-
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proving the interpretability and trustworthiness of
LLM-based decisions in scientific verification con-
texts.

Limitations

While our system demonstrates strong performance
on both retrieval and classification for scientific fact
verification, several limitations remain.

First, our retrieval pipeline relies on precom-
puted document embeddings and staged reranking,
which - although effective - can be computation-
ally expensive and may not scale efficiently to real-
time or large-scale applications. The use of LLM-
based reranking, in particular, introduces latency
and resource demands that may be prohibitive in
deployment scenarios without high-performance
infrastructure.

Second, while prompting-based approaches out-
perform supervised baselines in our setting, they
are sensitive to prompt design and require manual
tuning. Our evaluation does not fully explore the
robustness of these prompts to variation in phras-
ing, order, or input format, nor does it address the
interpretability of the model’s reasoning process.
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and F. Miletić. 2024. Ragar, your falsehood radar:
Rag-augmented reasoning for political fact-checking
using multimodal large language models. Preprint,
arXiv:2404.12065.

Carlos Lassance, Hervé Déjean, Thibault Formal, and
Stéphane Clinchant. 2024. Splade-v3: New baselines
for splade. Preprint, arXiv:2403.06789.

Jiaxin Li and Xiaojun Chang. 2022. Combating misin-
formation by sharing the truth: a study on the spread
of fact-checks on social media. Information Systems
Frontiers, pages 1–15. Epub ahead of print.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2019.
Roberta: A robustly optimized bert pretraining ap-
proach. Preprint, arXiv:1907.11692.

Kyle Lo, Lucy Lu Wang, Mark Neumann, Rodney Kin-
ney, and Daniel Weld. 2020. S2ORC: The semantic
scholar open research corpus. In Proceedings of the
58th Annual Meeting of the Association for Compu-
tational Linguistics, pages 4969–4983, Online. Asso-
ciation for Computational Linguistics.

Yash Malviya, Karan Dhingra, and Maneesh Singh.
2024. Mst-r: Multi-stage tuning for retrieval systems
and metric evaluation. Preprint, arXiv:2412.10313.

Paulius Micikevicius, Sharan Narang, Jonah Alben, Gre-
gory Diamos, Erich Elsen, David Garcia, Boris Gins-
burg, Michael Houston, Oleksii Kuchaiev, Ganesh
Venkatesh, and Hao Wu. 2018. Mixed precision train-
ing. Preprint, arXiv:1710.03740.

Preslav Nakov, David Corney, Maram Hasanain, Firoj
Alam, Tamer Elsayed, Alberto Barrón-Cedeño, Paolo
Papotti, Shaden Shaar, and Giovanni Da San Martino.
2021. Automated fact-checking for assisting human
fact-checkers. Preprint, arXiv:2103.07769.

Dan Saattrup Nielsen and Ryan McConville. 2022.
Mumin: A large-scale multilingual multimodal
fact-checked misinformation social network dataset.
Preprint, arXiv:2202.11684.

Haoran Ou, Gelei Deng, Xingshuo Han, Jie Zhang, Xin-
lei He, Han Qiu, Shangwei Guo, and Tianwei Zhang.
2025. Holmes: Automated fact check with large
language models. Preprint, arXiv:2505.03135.

Rrubaa Panchendrarajan and Arkaitz Zubiaga. 2024.
Claim detection for automated fact-checking: A sur-
vey on monolingual, multilingual and cross-lingual
research. Natural Language Processing Journal,
7:100066.

John Pougué-Biyong, Valentina Semenova, Alexan-
dre Matton, Rachel Han, Aerin Kim, Renaud Lam-
biotte, and J Doyne Farmer. 2021. Debagreement: A
comment-reply dataset for (dis)agreement detection
in online debates. In NeurIPS Datasets and Bench-
marks Track (Round 2).

Dorian Quelle and Alexandre Bovet. 2024. The perils
and promises of fact-checking with large language
models. Frontiers in Artificial Intelligence, 7.

Nils Reimers and Iryna Gurevych. 2021. The curse of
dense low-dimensional information retrieval for large
index sizes. Preprint, arXiv:2012.14210.

Stephen Robertson and Hugo Zaragoza. 2009. The
probabilistic relevance framework: Bm25 and be-
yond. Found. Trends Inf. Retr., 3(4):333–389.

Arkadiy Saakyan, Tuhin Chakrabarty, and Smaranda
Muresan. 2021. COVID-fact: Fact extraction and
verification of real-world claims on COVID-19 pan-
demic. In Proceedings of the 59th Annual Meet-
ing of the Association for Computational Linguistics
and the 11th International Joint Conference on Natu-
ral Language Processing (Volume 1: Long Papers),
pages 2116–2129, Online. Association for Computa-
tional Linguistics.

Mourad Sarrouti, Asma Ben Abacha, Yassine Mrabet,
and Dina Demner-Fushman. 2021. Evidence-based
fact-checking of health-related claims. In Findings
of the Association for Computational Linguistics:

301

https://arxiv.org/abs/2504.10166
https://arxiv.org/abs/2504.10166
https://arxiv.org/abs/2504.10166
https://arxiv.org/abs/2012.00614
https://arxiv.org/abs/2012.00614
https://arxiv.org/abs/2412.16100
https://arxiv.org/abs/2412.16100
https://arxiv.org/abs/2207.06300
https://arxiv.org/abs/2207.06300
https://arxiv.org/abs/2006.03654
https://arxiv.org/abs/2006.03654
https://doi.org/10.1093/applin/17.4.433
https://doi.org/10.1093/applin/17.4.433
https://doi.org/10.1108/eb026526
https://doi.org/10.1108/eb026526
https://arxiv.org/abs/2004.04906
https://arxiv.org/abs/2004.04906
https://arxiv.org/abs/2404.12065
https://arxiv.org/abs/2404.12065
https://arxiv.org/abs/2404.12065
https://arxiv.org/abs/2403.06789
https://arxiv.org/abs/2403.06789
https://doi.org/10.1007/s10796-022-10296-z
https://doi.org/10.1007/s10796-022-10296-z
https://doi.org/10.1007/s10796-022-10296-z
https://arxiv.org/abs/1907.11692
https://arxiv.org/abs/1907.11692
https://doi.org/10.18653/v1/2020.acl-main.447
https://doi.org/10.18653/v1/2020.acl-main.447
https://arxiv.org/abs/2412.10313
https://arxiv.org/abs/2412.10313
https://arxiv.org/abs/1710.03740
https://arxiv.org/abs/1710.03740
https://arxiv.org/abs/2103.07769
https://arxiv.org/abs/2103.07769
https://arxiv.org/abs/2202.11684
https://arxiv.org/abs/2202.11684
https://arxiv.org/abs/2505.03135
https://arxiv.org/abs/2505.03135
https://doi.org/10.1016/j.nlp.2024.100066
https://doi.org/10.1016/j.nlp.2024.100066
https://doi.org/10.1016/j.nlp.2024.100066
https://scale.com/open-datasets/oxford
https://scale.com/open-datasets/oxford
https://scale.com/open-datasets/oxford
https://doi.org/10.3389/frai.2024.1341697
https://doi.org/10.3389/frai.2024.1341697
https://doi.org/10.3389/frai.2024.1341697
https://arxiv.org/abs/2012.14210
https://arxiv.org/abs/2012.14210
https://arxiv.org/abs/2012.14210
https://doi.org/10.1561/1500000019
https://doi.org/10.1561/1500000019
https://doi.org/10.1561/1500000019
https://doi.org/10.18653/v1/2021.acl-long.165
https://doi.org/10.18653/v1/2021.acl-long.165
https://doi.org/10.18653/v1/2021.acl-long.165
https://doi.org/10.18653/v1/2021.findings-emnlp.297
https://doi.org/10.18653/v1/2021.findings-emnlp.297


EMNLP 2021, pages 3499–3512, Punta Cana, Do-
minican Republic. Association for Computational
Linguistics.

Ipek Baris Schlicht, Eugenia Fernandez, Berta Chulvi,
and Paolo Rosso. 2023. Automatic detection of
health misinformation: a systematic review. Journal
of Ambient Intelligence and Humanized Computing,
pages 1–13. Advance online publication.

Tal Schuster, Adam Fisch, and Regina Barzilay. 2021.
Get your vitamin c! robust fact verification with
contrastive evidence. Preprint, arXiv:2103.08541.

Shuvam Shiwakoti, Surendrabikram Thapa, Kritesh
Rauniyar, Akshyat Shah, Aashish Bhandari, and Us-
man Naseem. 2024. Analyzing the dynamics of cli-
mate change discourse on Twitter: A new annotated
corpus and multi-aspect classification. In Proceed-
ings of the 2024 Joint International Conference on
Computational Linguistics, Language Resources and
Evaluation (LREC-COLING 2024), pages 984–994,
Torino, Italia. ELRA and ICCL.

Ruiran Su, Jiasheng Si, Zhijiang Guo, and Janet B. Pier-
rehumbert. 2025. Climateviz: A benchmark for sta-
tistical reasoning and fact verification on scientific
charts. Preprint, arXiv:2506.08700.

Weiwei Sun, Lingyong Yan, Xinyu Ma, Pengjie Ren,
Dawei Yin, and Zhaochun Ren. 2023. Is chatgpt
good at search? investigating large language models
as re-ranking agent. ArXiv, abs/2304.09542.

James Thorne, Andreas Vlachos, Christos
Christodoulopoulos, and Arpit Mittal. 2018.
FEVER: a large-scale dataset for fact extraction
and VERification. In Proceedings of the 2018
Conference of the North American Chapter of
the Association for Computational Linguistics:
Human Language Technologies, Volume 1 (Long
Papers), pages 809–819, New Orleans, Louisiana.
Association for Computational Linguistics.

Nicolò Urbani, Sandip Modha, and Gabriella Pasi. 2024.
Retrieving semantics for fact-checking: A compar-
ative approach using CQ (claim to question) & AQ
(answer to question). In Proceedings of the Sev-
enth Fact Extraction and VERification Workshop
(FEVER), pages 37–46, Miami, Florida, USA. Asso-
ciation for Computational Linguistics.

Sander van der Linden, Anthony Leiserowitz, Seth
Rosenthal, and Edward Maibach. 2017. Inoculat-
ing the public against misinformation about climate
change. Global Challenges, 1(2):1600008.

Ivan Vykopal, Matúš Pikuliak, Simon Ostermann, and
Marián Šimko. 2024. Generative large language mod-
els in automated fact-checking: A survey. Preprint,
arXiv:2407.02351.

David Wadden, Shanchuan Lin, Kyle Lo, Lucy Lu
Wang, Madeleine van Zuylen, Arman Cohan, and
Hannaneh Hajishirzi. 2020. Fact or fiction: Verifying

scientific claims. In Proceedings of the 2020 Con-
ference on Empirical Methods in Natural Language
Processing (EMNLP), pages 7534–7550, Online. As-
sociation for Computational Linguistics.

David Wadden, Kyle Lo, Lucy Lu Wang, Arman Cohan,
Iz Beltagy, and Hannaneh Hajishirzi. 2022. Mul-
tiVerS: Improving scientific claim verification with
weak supervision and full-document context. In Find-
ings of the Association for Computational Linguistics:
NAACL 2022, pages 61–76, Seattle, United States.
Association for Computational Linguistics.

Wenhui Wang, Furu Wei, Li Dong, Hangbo Bao,
Nan Yang, and Ming Zhou. 2020. Minilm: Deep
self-attention distillation for task-agnostic com-
pression of pre-trained transformers. Preprint,
arXiv:2002.10957.

William Yang Wang. 2017. “liar, liar pants on fire”:
A new benchmark dataset for fake news detection.
In Proceedings of the 55th Annual Meeting of the
Association for Computational Linguistics (Volume 2:
Short Papers), pages 422–426, Vancouver, Canada.
Association for Computational Linguistics.

Yuxi Wang, Martin McKee, Aleksandra Torbica, and
David Stuckler. 2019. Systematic literature review
on the spread of health-related misinformation on
social media. Social Science Medicine, 240:112552.

Adina Williams, Nikita Nangia, and Samuel Bowman.
2018. A broad-coverage challenge corpus for sen-
tence understanding through inference. In Proceed-
ings of the 2018 Conference of the North American
Chapter of the Association for Computational Lin-
guistics: Human Language Technologies, Volume
1 (Long Papers), pages 1112–1122, New Orleans,
Louisiana. Association for Computational Linguis-
tics.

Peilin Yang, Hui Fang, and Jimmy Lin. 2017. Anserini:
Enabling the use of lucene for information retrieval
research. In Proceedings of the 40th International
ACM SIGIR Conference on Research and Devel-
opment in Information Retrieval, SIGIR ’17, page
1253–1256, New York, NY, USA. Association for
Computing Machinery.

Yinglong Yu, Hao Shen, Zhengyi Lyu, and Qi He. 2025.
Application and optimization of large models based
on prompt tuning for fact-check-worthiness estima-
tion. Preprint, arXiv:2504.18104.

Haoyu Zhang, Jun Liu, Zhenhua Zhu, Shulin Zeng,
Maojia Sheng, Tao Yang, Guohao Dai, and Yu Wang.
2024. Efficient and effective retrieval of dense-sparse
hybrid vectors using graph-based approximate near-
est neighbor search. Preprint, arXiv:2410.20381.

Yanzhao Zhang, Dingkun Long, Guangwei Xu, and
Pengjun Xie. 2022. Hlatr: Enhance multi-stage text
retrieval with hybrid list aware transformer reranking.
Preprint, arXiv:2205.10569.

302

https://doi.org/10.1007/s12652-023-04619-4
https://doi.org/10.1007/s12652-023-04619-4
https://arxiv.org/abs/2103.08541
https://arxiv.org/abs/2103.08541
https://aclanthology.org/2024.lrec-main.88/
https://aclanthology.org/2024.lrec-main.88/
https://aclanthology.org/2024.lrec-main.88/
https://arxiv.org/abs/2506.08700
https://arxiv.org/abs/2506.08700
https://arxiv.org/abs/2506.08700
https://doi.org/10.18653/v1/N18-1074
https://doi.org/10.18653/v1/N18-1074
https://doi.org/10.18653/v1/2024.fever-1.3
https://doi.org/10.18653/v1/2024.fever-1.3
https://doi.org/10.18653/v1/2024.fever-1.3
https://doi.org/10.1002/gch2.201600008
https://doi.org/10.1002/gch2.201600008
https://doi.org/10.1002/gch2.201600008
https://arxiv.org/abs/2407.02351
https://arxiv.org/abs/2407.02351
https://doi.org/10.18653/v1/2020.emnlp-main.609
https://doi.org/10.18653/v1/2020.emnlp-main.609
https://doi.org/10.18653/v1/2022.findings-naacl.6
https://doi.org/10.18653/v1/2022.findings-naacl.6
https://doi.org/10.18653/v1/2022.findings-naacl.6
https://arxiv.org/abs/2002.10957
https://arxiv.org/abs/2002.10957
https://arxiv.org/abs/2002.10957
https://doi.org/10.18653/v1/P17-2067
https://doi.org/10.18653/v1/P17-2067
https://doi.org/10.1016/j.socscimed.2019.112552
https://doi.org/10.1016/j.socscimed.2019.112552
https://doi.org/10.1016/j.socscimed.2019.112552
https://doi.org/10.18653/v1/N18-1101
https://doi.org/10.18653/v1/N18-1101
https://doi.org/10.1145/3077136.3080721
https://doi.org/10.1145/3077136.3080721
https://doi.org/10.1145/3077136.3080721
https://arxiv.org/abs/2504.18104
https://arxiv.org/abs/2504.18104
https://arxiv.org/abs/2504.18104
https://arxiv.org/abs/2410.20381
https://arxiv.org/abs/2410.20381
https://arxiv.org/abs/2410.20381
https://arxiv.org/abs/2205.10569
https://arxiv.org/abs/2205.10569


Version R@2 R@5 R@10 B-Pref R. Score

Zero-Shot LLM 0.2285 0.4398 0.5961 0.4692 0.4334
Few-Shot LLM 0.2309 0.4413 0.6006 0.4818 0.4387

Table 4: Comparison of zero-shot and few-shot prompting strategies results for the LLM-based reranker.

LLM Prompting Strategy for Passage Ranking (Zero-Shot)
System Prompt:
You are given a CLAIM and N PASSAGES. A passage is evidentiary with respect to a claim if it contains information that could either SUPPORT or REFUTE
the claim. Whether it supports or refutes does not matter. Return exactly one line with the passage numbers, most evidentiary first, least evidentiary last.
Output numbers only.

Figure 2: Prompting strategy for LLM-based passage ranking. Given a claim and a set of passages, the model is
instructed to output a permutation of passage indices in decreasing order of evidentiary relevance.

A RankGPT prompting details

To use an LLM as the final reranking stage, we
adopt the permutation generation approach (as in-
troduced in RankGPT). It involves instructing an
LLM to directly output the permutations of a group
of passages. This method ranks passages directly
without an intermediate relevance score. To com-
bine the LLM output with the cross-encoder score,
we convert the LLM-based ranks into normalized
scores, and then compute a fused score incorporat-
ing the cross-encoder score for each document, as
described in subsection 4.1.3.

The prompt to the LLM is depicted in Figure 2.
For each claim, we include the top 20 abstracts
retrieved by the cross-encoder. In a few-shots
scenario, we additionally incorporate the exam-
ples shown in Figure 3. We then produce gold
permutations as follows: all evidentiary abstracts
(SUPPORTS or REFUTES) must be ranked higher than
any NEI abstracts. Except for this rule, the relative
order of abstracts is random.

We include the few-shot setting in our final re-
sults, as it was demonstrated to yield slightly higher
results than the zero-shot setting, as shown in Ta-
ble 4.

Table 5 contains the results of ablations for the
fusion parameter α. As α = 0.4 yielded the best
overall retrieval performance (as defined by the R.
Score), it was included in the final results.

B Full retrieval ablations

Table 6 presents a comprehensive ablation
study evaluating different retrieval configurations.
Among individual retrievers, SPLADE outper-
forms BM25 and Dense, particularly in Recall@10
and B-Pref. Adding a cross-encoder (CE) reranker
consistently boosts performance across all set-

tings, with SPLADE+CE achieving the best single-
retriever reranking results. Combinations of
multiple retrievers further improve performance,
particularly when fused with the cross-encoder.
The best performance is achieved with the full
pipeline—BM25 + SPLADE + Dense + CE +
LLM—which yields the highest Recall@2, Re-
call@5, Recall@10, and overall retrieval score.

Table 7 presents additional ablation results fo-
cusing on the first-stage retrieval component, com-
paring different combinations of BM25, Dense,
and SPLADE retrievers across varying top-k cut-
offs. Individually, SPLADE consistently outper-
forms BM25 and Dense, especially at lower k, but
all three benefit significantly from hybridization.
Notably, combining any two retrievers yields sub-
stantial gains over individual models. The best
overall performance is achieved by the full hy-
brid—SPLADE + BM25 + Dense—which achieves
the highest recall across all k values. These results
confirm that hybrid retrieval setups provide more
comprehensive and diverse evidence coverage than
any single retriever alone. As R@600 is much
higher than recall at lower values of k, top 600
abstracts retrieved by the first-stage retrieval com-
ponent were passed on further to the reranker. Due
to time constraints, the effect of setting the value
of k for the first-stage retrieval component to 800
and higher on the overall system performance was
not evaluated.

C Classification prompting details

For Subtask 2 (Stance Classification), we tested
four different prompting settings.

Few-shots-hybrid involves splitting the classi-
fication task into two stages within one prompt.
The model is asked to first distinguish between
the evidentiary (SUPPORTS or REFUTES) and non-
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Alpha R@2 R@5 R@10 B-Pref R. Score

0.0 0.2280 0.3919 0.5728 0.5016 0.4236
0.2 0.2375 0.4069 0.5884 0.4826 0.4288
0.4 0.2309 0.4413 0.6006 0.4818 0.4386
0.6 0.1960 0.4151 0.6044 0.4521 0.4169
0.8 0.1837 0.3726 0.5795 0.4315 0.3918
1.0 0.1882 0.3884 0.5643 0.4270 0.3920

Table 5: Ablation results for different values of the fusion parameter α, which controls the weighting between
LLM-based and cross-encoder (CE) scores in the final reranking step. α = 0.0 corresponds to using only the LLM
(RankGPT) scores, while α = 1.0 corresponds to using only the CE scores.

Algorithm R@2 R@5 R@10 B-Pref R. Score

BM25 0.0717 0.1233 0.1803 0.1481 0.1309
Dense 0.0638 0.1123 0.1660 0.1591 0.1253
SPLADE 0.0647 0.1452 0.2190 0.1909 0.1550

BM25 + CE 0.0647 0.1452 0.2190 0.5044 0.2333
Dense + CE 0.2001 0.3251 0.4590 0.3715 0.3389
SPLADE + CE 0.1882 0.3511 0.5336 0.4014 0.3686

BM25 + Dense 0.1115 0.2204 0.3080 0.2509 0.2227
SPLADE + Dense 0.1006 0.1796 0.2821 0.2305 0.1982
BM25 + SPLADE 0.1412 0.2522 0.3476 0.2707 0.2529

BM25 + Dense + CE 0.2075 0.3743 0.5493 0.4246 0.3889
SPLADE + Dense + CE 0.1954 0.3683 0.5429 0.4177 0.3811
BM25 + SPLADE + CE 0.1993 0.3639 0.5455 0.4172 0.3815

BM25 + SPLADE + Dense 0.1447 0.2693 0.3840 0.3102 0.2771
BM25 + SPLADE + Dense + CE 0.1882 0.3884 0.5643 0.4270 0.3920
BM25 + SPLADE + Dense + CE + LLM 0.2309 0.4413 0.6006 0.4818 0.4386

Table 6: Retrieval performance for various ablation settings. We use RRF to combine the results of multiple models.
CE = Cross-Encoder, Dense = dense retriever model.

evidentiary (NEI) abstracts, and then decide if
the evidentiary abstracts should be labeled as
SUPPORTS or REFUTES. We also provide six exam-
ples of claims + three abstracts labeled with respect
to their relationship to the corresponding claim.
The samples were selected such that each example
claim has one supporting, one refuting, and one
NEI abstract.

Zero-shot-hybrid involves using the prompt
from Figure 2, but without the few-shot examples.

Zero-shot-one-step involves directly asking the
model to assign one of the three labels to each
claim-abstract pair, as shown in Figure 5.

Zero-shot-two-step involves splitting the classi-
fication task into two stages, similarly to Zero-shot-
hybrid, but using a separate prompt and model
instance for each stage, shown in Figure 4.
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Algorithm R@100 R@200 R@400 R@600 R@800

Dense 0.6000 0.6667 0.7333 0.7667 0.7833
BM25 0.3583 0.5083 0.7167 0.8000 0.8667
SPLADE 0.6250 0.7583 0.8083 0.8333 0.8667
BM25 + Dense 0.7000 0.8000 0.8333 0.9083 0.9333
SPLADE + Dense 0.7583 0.7833 0.8833 0.9000 0.9083
SPLADE + BM25 0.7083 0.8167 0.8833 0.9333 0.9500
SPLADE + BM25 + Dense 0.8417 0.8667 0.9250 0.9583 0.9667

Table 7: Additional ablation results for Stage 1 hybrid retrieval. Dense = dense retriever model.

System Prompt (LLM Instruction)
You are an expert scientific fact-checker.
Task
For a given claim and one paper abstract, reason internally in two steps:
1. Decide if the abstract contains evidence that directly supports OR directly refutes the claim.
2. If evidence exists, decide whether it SUPPORTS or REFUTES.

Output Rules

• Think silently; do NOT reveal your reasoning.

• Then output exactly one of these uppercase tokens with nothing else:

– SUPPORTS (evidence backs the claim)

– REFUTES (evidence contradicts the claim)
– NEI (Not Enough Information – no evidence)

• If the input is malformed, your output is irrelevant because the client will never ask you (inputs are pre-validated).

Few-shot Example 1:

Claim: Looks like climate models might be overestimating the warming trend. #ClimateAction #ClimateData
Abstracts:

• (Refutes) Most present-generation climate models simulate an increase [...].

• (Supports) Multi-model climate experiments carried out as part of [...].

• (NEI) Air pressure at sea level during winter has decreased over [...].

Few-shot Example 2:
Claim: ’Natural gas’ is considered cleaner than coal and oil
Abstracts:

• (Refutes) In April 2011, we published the first peer-reviewed analysis of [...].

• (Supports) A well-known theorem by Herfindahl states that the low-cost [...].

• (NEI) Shale gas proponents argue this unconventional fossil fuel offers [...].

[Four more examples were included in the real prompt]

Figure 3: Prompt diagram for the "few-shots hybrid" classification configuration. Full prompt included additional
four examples, each with one SUPPORTS, one REFUTES, and one NEI abstract.
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Two-Step LLM Prompting Strategy for Claim Verification (Zero-Shot)

Step 1: Evidence Detection
System Prompt:

You are an expert scientific fact-checker.

Task Given one claim and one scientific-paper abstract, decide whether the abstract contains evidence that directly supports or directly
refutes the claim.

Label Definitions
• EVIDENCE – The abstract presents data, observations, arguments, or findings that clearly support *or* contradict the claim. Mere
topical overlap is insufficient; there must be an evidentiary link.

• UNKNOWN – Not enough information. The abstract is off-topic, only tangentially related, or lacks evidence about the claim’s truth value.

Output Rules 1. Think silently before answering. 2. Output exactly one of the two uppercase tokens, with no extra words, punctuation,
or whitespace: EVIDENCE or UNKNOWN 3. If input is malformed, output UNKNOWN. You must never reveal your reasoning—only the
single label.

Step 2: Polarity Classification
System Prompt:

You are an expert scientific fact-checker.

Task Given one claim and one scientific-paper abstract, decide whether the abstract contains evidence that directly supports OR directly
refutes the claim.

Label Definitions
• SUPPORTS – The abstract presents data, observations, arguments, or findings that clearly support the claim.
• REFUTES – The abstract presents data, observations, arguments, or findings that clearly contradict the claim.
(Mere topical overlap is insufficient; there must be an evidentiary link.)

Output Rules 1. Think silently before answering. 2. Then output exactly one of the two lowercase tokens, with no extra words,

punctuation, or whitespace: SUPPORTS or REFUTES 3. If the inputs are missing or malformed, output UNKNOWN. You must never reveal
your reasoning—only the single label.

Note: Abstracts labeled as UNKNOWN in Step 1 are not passed to Step 2.

Figure 4: Two-step prompting strategy used for "zero-shot-two-step" classification configuration. Step 1 filters out
non-evidentiary abstracts, and Step 2 assigns polarity labels (SUPPORTS or REFUTES) to the evidentiary ones.

One-Step LLM Prompting Strategy for Claim Verification (Zero-Shot)

System Prompt:

You are an expert scientific fact-checker.
Given a claim and a paper abstract, reply with exactly one of: supports | refutes | not enough information

Figure 5: Prompt for the "zero-shot-one-step" classification configuration.
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